Skip to main content
Log in

Orienting and maintenance of spatial attention in audition and vision: multimodal and modality-specific brain activations

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

We studied orienting and maintenance of spatial attention in audition and vision. Functional magnetic resonance imaging (fMRI) in nine healthy subjects revealed activations in the same superior and inferior parietal, and posterior prefrontal areas in the auditory and visual orienting tasks when these tasks were compared with the corresponding maintenance tasks. Attention-related activations in the thalamus and cerebellum were observed during the auditory orienting and maintenance tasks and during the visual orienting task. In addition to the supratemporal auditory cortices, auditory orienting, and maintenance produced stronger activity than the respective visual tasks in the inferior parietal and prefrontal cortices, whereas only the occipital visual cortex and the superior parietal cortex showed stronger activity during the visual tasks than during the auditory tasks. Differences between the brain networks involved in auditory and visual spatial attention could be, for example, due to different encoding of auditory and visual spatial information or differences in stimulus-driven (bottom-up triggered) and voluntary (top-down controlled) attention between the auditory and visual modalities, or both.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Akshoomoff NA, Courchesne E, Townsend J (1997) Attention coordination and anticipatory control. Int Rev Neurobiol 41:575–598

    PubMed  CAS  Google Scholar 

  • Alho K, Medvedev SV, Pakhomov SV, Roudas MS, Tervaniemi M, Reinikainen K, Zeffiro T, Näätänen R (1999) Selective tuning of the left and right auditory cortices during spatially directed attention. Cogn Brain Res 7:335–341

    Article  CAS  Google Scholar 

  • Alho K, Woods DL, Algazi A (1994) Processing of auditory stimuli during auditory and visual attention as revealed by event-related potentials. Psychophysiology 31:469–479

    Article  PubMed  CAS  Google Scholar 

  • Allen G, Buxton RB, Wong EC, Courchesne E (1997) Attentional activation of the cerebellum independent of motor involvement. Science 275:1940–1943

    Article  PubMed  CAS  Google Scholar 

  • Allen GI, Gilbert PF, Yin TC (1978) Convergence of cerebral inputs onto dentate neurons in monkey. Exp Brain Res 32:151–170

    Article  PubMed  CAS  Google Scholar 

  • Aron AR, Robbins TW, Poldrack RA (2004) Inhibition and the right inferior frontal cortex. Trends Cogn Sci 8:170–177

    Article  PubMed  Google Scholar 

  • Beckmann CF, Jenkinson M, Smith SM (2003) General multilevel linear modeling for group analysis in FMRI. Neuroimage 20:1052–1063

    Article  PubMed  Google Scholar 

  • Bos J, Benevento LA (1975) Projections of the medial pulvinar to orbital cortex and frontal eye fields in the rhesus monkey (Macaca mulatta). Exp Neurol 49:487–496

    Article  PubMed  CAS  Google Scholar 

  • Brodal P (1978) The corticopontine projection in the rhesus monkey. Origin and principles of organization. Brain 101:251–283

    Article  PubMed  CAS  Google Scholar 

  • Brugge JF, Reale RA, Jenison RL, Schnupp J (2001) Auditory cortical spatial receptive fields. Audiol Neurootol 6:173–177

    Article  PubMed  CAS  Google Scholar 

  • Corbetta M, Miezin FM, Shulman GE, Petersen SE (1993) A PET study of visuospatial attention. J Neurosci 13:1202–1226

    PubMed  CAS  Google Scholar 

  • Corbetta M, Kincade JM, Ollinger JM, McAvoy MP, Shulman GL (2000) Voluntary orienting is dissociated from target detection in human posterior parietal cortex. Nat Neurosci 3:292–297

    Article  PubMed  CAS  Google Scholar 

  • Corbetta M, Shulman GL (2002) Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci 3:201–215

    Article  PubMed  CAS  Google Scholar 

  • Corbetta M, Kincade JM, Shulman GL (2002) Neural systems for visual orienting and their relationships to spatial working memory. J Cogn Neurosci 14:508–523

    Article  PubMed  Google Scholar 

  • Coull JT, Nobre AC (1998) Where and when to pay attention: the neural systems for directing attention to spatial locations and to time intervals as revealed by both PET and fMRI. J Neurosci 18:7426–7435

    PubMed  CAS  Google Scholar 

  • Downar J, Crawley AP, Mikulis DJ, Davis KD (2000) A multimodal cortical network for the detection of changes in the sensory environment. Nat Neurosci 3:277–283

    Article  PubMed  CAS  Google Scholar 

  • Degerman A, Rinne T, Salmi J, Salonen O, Alho K (2006) Selective attention to sound location or pitch studied with fMRI. Brain Res 1077:123–134

    Article  PubMed  CAS  Google Scholar 

  • Farah MJ, Wong AB, Monheit MA, Morrow LA (1989) Parietal lobe mechanisms of spatial attention: modality specific or multimodal? Brain Res 27:461–470

    CAS  Google Scholar 

  • Fiez JA, Petersen SE, Cheney MK, Raichle ME (1992) Impaired non-motor learning and error detection associated with cerebellar damage. A single case study. Brain 115:155–178

    Article  PubMed  Google Scholar 

  • Furukawa S, Xu L, Middlebrooks JC (2000) Coding of sound-source location by ensembles of cortical neurons. J Neurosci 20:1216–1228

    PubMed  CAS  Google Scholar 

  • Gaab N, Gaser C, Zaehle T, Jäncke L, Schlaug G (2003) Functional anatomy of pitch memory-an fMRI study with sparse temporal sampling. Neuroimage 19:1417–1426

    Article  PubMed  Google Scholar 

  • Gemba H, Sasaki K (1989) Potential related to no-go reaction of go/no-go hand movement task with color discrimination in human. Neurosci Lett 101:263–268

    Article  PubMed  CAS  Google Scholar 

  • Giesbrecht B, Woldorff MG, Song AW, Mangun GR (2003) Neural mechanisms of top-down control during spatial and feature attention. Neuroimage 19:496–512

    Article  PubMed  CAS  Google Scholar 

  • Gitelman DR, Nobre AC, Parrish TB, LaBar KS, Kim YH, Meyer JR, Mesulam MM (1999) A large-scale distributed network for covert spatial attention: further anatomical deliation based on stringent behavioural and cognitive controls. Brain 122:1093–1106

    Article  PubMed  Google Scholar 

  • Gottwald B, Mihajlovic Z, Wilde B, Mehdorn HM (2003) Does the cerebellum contribute to specific aspects of attention? Neuropsychologia 41:1452–1460

    Article  PubMed  Google Scholar 

  • Heinze HJ, Mangun GR, Burchert W, Hinrichs H, Scholz M, Münte TF, Gos A, Scherg M, Johannes S, Hundeshagen H (1994) Combined spatial and temporal imaging of brain activity during visual selective attention in humans. Nature 372:543–546

    Article  PubMed  CAS  Google Scholar 

  • Hopfinger JB, Buonocore MH, Mangun GR (2000) The neural mechanisms of top-down attentional control. Nat Neurosci 3:284–291

    Article  PubMed  CAS  Google Scholar 

  • Hugdahl K, Wester K, Asbjornsen A (1991) Auditory neglect after right frontal lobe and right pulvinar thalamic lesions. Brain Lang 41:465–473

    Article  PubMed  CAS  Google Scholar 

  • Hyvärinen J (1982) Posterior parietal lobe of the primate brain. Physiol Rev 62:1060–1129

    PubMed  Google Scholar 

  • Ito M (1990) A new physiological concept on cerebellum. Rev Neurol 146:564–569

    PubMed  CAS  Google Scholar 

  • Kirschen MP, Chen SH, Schraedley-Desmond P, Desmond JE (2005) Load- and practice-dependent increases in cerebro-cerebellar activation in verbal working memory: an fMRI study. Neuroimage 24:462–472

    Article  PubMed  Google Scholar 

  • Knight RT, Scabini D, Woods DL, Clayworth CC (1989) Contributions of temporal-parietal junction to the human auditory P3. Brain Res 502:109–116

    Article  PubMed  CAS  Google Scholar 

  • Konishi S, Nakajima K, Uchida I, Kikyo H, Kameyama M, Miyashita Y (1999) Common inhibitory mechanism in human inferior prefrontal cortex revealed by event-related functional MRI. Brain 122:981–991

    Article  PubMed  Google Scholar 

  • LaBerge D (1995) Attentional processing: the brain’s art of mindfulness. Harvard University Press, Cambridge

    Google Scholar 

  • LaBerge D, Buchsbaum MS (1990) Positron emission tomographic measurements of pulvinar activity during an attention task. J Neurosci 10:613–619

    PubMed  CAS  Google Scholar 

  • Le TH, Pardo JV, Hu X (1998) 4 T-fMRI study of nonspatial shifting of selective attention: cerebellar and parietal contributions. J Neurophysiol 79:1535–1548

    PubMed  CAS  Google Scholar 

  • Leiner HC, Leiner AL, Dow RS (1991) The human cerebro-cerebellar system: its computing, cognitive, and language skills. Behav Brain Res 44:113–128

    Article  PubMed  CAS  Google Scholar 

  • Mangun GR, Buonocore MH, Girelli M, Jha AP (1998) ERP and fMRI measures of visual spatial selective attention. Hum Brain Mapp 6:383–389

    Article  PubMed  CAS  Google Scholar 

  • Martinkauppi S, Rämä P, Aronen HJ, Korvenoja A, Carlson S (2000) Working memory of auditory localization. Cereb Cortex 10:889–898

    Article  PubMed  CAS  Google Scholar 

  • Menon V, Adleman NE, White CD, Glover GH, Reiss AL (2001) Error-related brain activation during a Go/NoGo response inhibition task. Hum Brain Mapp 12:131–143

    Article  PubMed  CAS  Google Scholar 

  • Mesulam MM (1999) Spatial attention and neglect: parietal, frontal and cingulate contributions to the mental representation and attentional targeting of salient extrapersonal events. Philos Trans R Soc Lond B Biol Sci 354:1325–1346

    Article  PubMed  CAS  Google Scholar 

  • Mesulam MM (1981) A cortical network for directed attention and unilateral neglect. Ann Neurol 10:309–325

    Article  PubMed  CAS  Google Scholar 

  • Mesulam MM, Van Hoesen GW, Pandya DN, Geschwind N (1977) Limbic and sensory connections of the inferior parietal lobule (area PG) in the rhesus monkey: a study with a new method for horseradish peroxidase histochemistry. Brain Res 136:393–414

    Article  PubMed  CAS  Google Scholar 

  • Middleton FA, Strick PL (1997) Cerebellar output channels. Int Rev Neurobiol 41:61–82

    Article  PubMed  CAS  Google Scholar 

  • Molholm S, Martinez A, Ritter W, Javitt DC, Foxe JJ (2005) The neural circuitry of pre-attentive auditory change-detection: an fMRI study of pitch and duration mismatch negativity generators. Cereb Cortex 15:545–551

    Article  PubMed  Google Scholar 

  • Näätänen R (1990) The role of attention in auditory information processing as revealed by event-related potentials and other brain measures of cognitive function. Behav Brain Sci 13:201–233

    Google Scholar 

  • Nitschke MF, Binkofski F, Buccino G, Posse S, Erdmann C, Kompf D, Seitz RJ, Heide W (2004) Activation of cerebellar hemispheres in spatial memorization of saccadic eye movements: an fMRI study. Hum Brain Mapp 22:155–164

    Article  PubMed  Google Scholar 

  • Noesselt T, Hillyard SA, Woldorff MG, Schoenfeld A, Hagner T, Jäncke L, Tempelmann C, Hinrichs H, Heinze HJ (2002) Delayed striate cortical activation during spatial attention. Neuron 35:575–587

    Article  PubMed  CAS  Google Scholar 

  • Petkov CI, Kang X, Alho K, Bertrand O, Yund EW, Woods DL (2004) Attentional modulation of human auditory cortex. Nat Neurosci 7:658–663

    Article  PubMed  CAS  Google Scholar 

  • Posner MI, Rothbart MK (2007) Research on attention networks as a model for the integration of psychological science. Annu Rev Psychol 10:1–23

    Article  Google Scholar 

  • Price CJ, Veltman DJ, Ashburner J, Josephs O, Friston KJ (1999) The critical relationship between the timing of stimulus presentation and data acquisition in blocked designs with fMRI. Neuroimage 10:36–44

    Article  PubMed  CAS  Google Scholar 

  • Ramnani N, Behrens TE, Johansen-Berg H, Richter MC, Pinsk MA, Andersson JL, Rudebeck P, Ciccarelli O, Richter W, Thompson AJ, Gross CG, Robson MD, Kastner S, Matthews PM (2006) The evolution of prefrontal inputs to the cortico-pontine system: diffusion imaging evidence from Macaque monkeys and humans. Cereb Cortex 16:811–818

    Article  PubMed  Google Scholar 

  • Rinne T, Degerman A, Alho K (2005) Superior temporal and inferior frontal cortices are activated by infrequent sound duration decrements: an fMRI study. Neuroimage 26:66–72

    Article  PubMed  Google Scholar 

  • Schall JD (2002) The neural selection and control of saccades by the frontal eye field. Philos Trans R Soc Lond B Biol Sci 29:1073–1082

    Google Scholar 

  • Schmahmann JD (1996) From movement to thought: anatomic substrates of cerebellar contribution to cognitive processing. Hum Brain Mapp 4:174–198

    Article  Google Scholar 

  • Schmahmann JD (1997) The cerebellum and cognition. Int Rev Neurobiol 41:475–630

    Article  Google Scholar 

  • Schmahmann JD, Doyon J, Toga AW, Petrides M, Evans AC (2000) MRI atlas of the human cerebellum. Academic, London

    Google Scholar 

  • Shomstein S, Yantis S (2006) Parietal cortex mediates voluntary control of spatial and nonspatial auditory attention. J Neurosci 26:435–439

    Article  PubMed  CAS  Google Scholar 

  • Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TE, Johansen-Berg H, Bannister PR, De Luca M, Drobnjak I, Flitney DE, Niazy RK, Saunders J, Vickers J, Zhang Y, De Stefano N, Brady JM, Matthews PM (2004) Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 23(Suppl 1):S208–S219

    Article  PubMed  Google Scholar 

  • Stecker GC, Middlebrooks JC (2003) Distributed coding of sound locations in the auditory cortex. Biol Cybern 89:341–349

    Article  PubMed  Google Scholar 

  • Thoenissen D, Zilles K, Toni I (2002) Differential involvement of parietal and precentral regions in movement preparation and motor intention. J Neurosci 15:9024–9034

    Google Scholar 

  • Toni I, Shah NJ, Fink GR, Thoenissen D, Passingham RE, Zilles K (2002) Multiple movement representations in the human brain: an event-related fMRI study. J Cogn Neurosci 14:769–784

    Article  PubMed  Google Scholar 

  • Tootell RB, Hadjikhani N, Hall EK, Marrett S, Vanduffel W, Vaughan JT, Dale AM (1998) The retinotopy of visual spatial attention. Neuron 21:1409–1422

    Article  PubMed  CAS  Google Scholar 

  • Townsend J, Courchesne E, Covington J, Westerfield M, Harris NS, Lyden P, Lowry TP, Press GA (1999) Spatial attention deficits in patients with acquired or developmental cerebellar abnormality. J Neurosci 19:5632–5643

    PubMed  CAS  Google Scholar 

  • Vandenberghe R, Gitelman DR, Parrish TB, Mesulam MM (2001) Functional specificity of superior parietal mediation of spatial shifting. Neuroimage 14:661–673

    Article  PubMed  CAS  Google Scholar 

  • Winkowski DE, Knudsen EI (2006) Top-down gain control of the auditory space map by gaze control circuitry in the barn owl. Nature 439:336–339

    Article  PubMed  CAS  Google Scholar 

  • Weissmann DH, Warner LM, Woldorff MG (2004) The neural mechanisms for minimizing cross-modal distraction. J Neurosci 24:10941–10949

    Article  CAS  Google Scholar 

  • Woldorff MG, Hillyard SA (1991) Modulation of early auditory processing during selective listening to rapidly presented tones. Electroencephalogr Clin Neurophysiol 79:170–191

    Article  PubMed  CAS  Google Scholar 

  • Woods DL, Alho K, Algazi A (1992) Intermodal selective attention I: effects on event-related potentials to lateralized auditory and visual stimuli. Electroencephalogr Clin Neurophysiol 82:341–355

    Article  PubMed  CAS  Google Scholar 

  • Woods DL, Knight RT, Scabini D (1993) Anatomical substrates of auditory selective attention: behavioral and electrophysiological effects of posterior association cortex lesions. Cogn Brain Res 1:227–240

    Article  CAS  Google Scholar 

  • Woolrich MW, Ripley BD, Brady M, Smith SM (2001) Temporal autocorrelation in univariate linear modeling of FMRI data. Neuroimage 14:1370–1386

    Article  PubMed  CAS  Google Scholar 

  • Wu CT, Weissman DH, Roberts KC, Woldorff MG (2007) The neural circuitry underlying the executive control of auditory spatial attention. Brain Res 23:187–198

    Article  CAS  Google Scholar 

  • Yantis S, Schwarzbach J, Serences JT, Carlson RL, Steinmetz MA, Pekar JJ, Courtney SM (2002) Transient neural activity in human parietal cortex during spatial attention shifts. Nat Neurosci 5:995–1002

    Article  PubMed  CAS  Google Scholar 

  • Zatorre RJ, Bouffard M, Ahad P, Belin P (2002) Where is ‘where’ in the human auditory cortex? Nat Neurosci 5:905–909

    Article  PubMed  CAS  Google Scholar 

  • Zatorre RJ, Mondor TA, Evans AC (1999) Auditory attention to space and frequency activates similar cerebral systems. Neuroimage 10:544–554

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Academy of Finland (grants numbers 201160, 210587, 202562, 207180, 210186, 209709, and 113789), Finnish Cultural Foundation, and Research Funds of the University of Helsinki.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juha Salmi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salmi, J., Rinne, T., Degerman, A. et al. Orienting and maintenance of spatial attention in audition and vision: multimodal and modality-specific brain activations. Brain Struct Funct 212, 181–194 (2007). https://doi.org/10.1007/s00429-007-0152-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-007-0152-2

Keywords

Navigation