Skip to main content
Log in

Kidney amino acid transport

  • Ion Channels, Receptors and Transporters
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Near complete reabsorption of filtered amino acids is a main specialized transport function of the kidney proximal tubule. This evolutionary conserved task is carried out by a subset of luminal and basolateral transporters that together form the transcellular amino acid transport machinery similar to that of small intestine. A number of other amino acid transporters expressed in the basolateral membrane of proximal kidney tubule cells subserve either specialized metabolic functions, such as the production of ammonium, or are part of the cellular housekeeping equipment. A new finding is that the luminal Na+-dependent neutral amino acid transporters of the SLC6 family require an associated protein for their surface expression as shown for the Hartnup transporter B0AT1 (SLC6A19) and suggested for the l-proline transporter SIT1 (IMINOB, SLC6A20) and for B0AT3 (XT2, SLC6A18). This accessory subunit called collectrin (TMEM27) is homologous to the transmembrane anchor region of the renin–angiotensin system enzyme ACE2 that we have shown to function in small intestine as associated subunit of the luminal SLC6 transporters B0AT1 and SIT1. Some mutations of B0AT1 differentially interact with these accessory subunits, providing an explanation for differential intestinal phenotypes among Hartnup patients. The basolateral efflux of numerous amino acids from kidney tubular cells is mediated by heteromeric amino acid transporters that function as obligatory exchangers. Thus, other transporters within the same membrane need to mediate the net efflux of exchange substrates, controlling thereby the net basolateral amino transport and thus the intracellular amino acid concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Anderson CM, Grenade DS, Boll M, Foltz M, Wake KA, Kennedy DJ, Munck LK, Miyauchi S, Taylor PM, Campbell FC, Munck BG, Daniel H, Ganapathy V, Thwaites DT (2004) H+/amino acid transporter 1 (PAT1) is the imino acid carrier: an intestinal nutrient/drug transporter in human and rat. Gastroenterology 127:1410–1422

    Article  PubMed  CAS  Google Scholar 

  2. Avissar NE, Ryan CK, Ganapathy V, Sax HC (2001) Na(+)-dependent neutral amino acid transporter ATB(0) is a rabbit epithelial cell brush-border protein. Am J Physiol Cell Physiol 281:C963–C971

    PubMed  CAS  Google Scholar 

  3. Bauch C, Forster N, Loffing-Cueni D, Summa V, Verrey F (2003) Functional cooperation of epithelial heteromeric amino acid transporters expressed in Madin-Darby canine kidney cells. J Biol Chem 278:1316–1322

    Article  PubMed  CAS  Google Scholar 

  4. Bohmer C, Broer A, Munzinger M, Kowalczuk S, Rasko JE, Lang F, Broer S (2005) Characterization of mouse amino acid transporter B0AT1 (slc6a19). Biochem J 389:745–751

    Article  PubMed  Google Scholar 

  5. Boll M, Daniel H, Gasnier B (2004) The SLC36 family: proton-coupled transporters for the absorption of selected amino acids from extracellular and intracellular proteolysis. Pflugers Arch 447:776–779

    Article  PubMed  CAS  Google Scholar 

  6. Borsani G, Bassi MT, Sperandeo MP, De Grandi A, Buoninconti A, Riboni M, Manzoni M, Incerti B, Pepe A, Andria G, Ballabio A, Sebastio G (1999) SLC7A7, encoding a putative permease-related protein, is mutated in patients with lysinuric protein intolerance. Nat Genet 21:297–301

    Article  PubMed  CAS  Google Scholar 

  7. Broer A, Klingel K, Kowalczuk S, Rasko JE, Cavanaugh J, Broer S (2004) Molecular cloning of mouse amino acid transport system B0, a neutral amino acid transporter related to Hartnup disorder. J Biol Chem 279:24467–24476

    Article  PubMed  CAS  Google Scholar 

  8. Broer S (2008) Amino acid transport across mammalian intestinal and renal epithelia. Physiol Rev 88:249–286

    Article  PubMed  CAS  Google Scholar 

  9. Broer S, Bailey CG, Kowalczuk S, Ng C, Vanslambrouck JM, Rodgers H, Auray-Blais C, Cavanaugh JA, Broer A, Rasko JE (2008) Iminoglycinuria and hyperglycinuria are discrete human phenotypes resulting from complex mutations in proline and glycine transporters. J Clin Invest 118:3881–3892

    Article  PubMed  CAS  Google Scholar 

  10. Butchbach ME, Lai L, Lin CL (2002) Molecular cloning, gene structure, expression profile and functional characterization of the mouse glutamate transporter (EAAT3) interacting protein GTRAP3-18. Gene 292:81–90

    Article  PubMed  CAS  Google Scholar 

  11. Camargo SM, Makrides V, Virkki LV, Forster IC, Verrey F (2005) Steady-state kinetic characterization of the mouse B(0)AT1 sodium-dependent neutral amino acid transporter. Pflugers Arch 451:338–348

    Article  PubMed  CAS  Google Scholar 

  12. Camargo SMR, Singer D, Makrides V, Huggel K, Pos KM, Wagner CA, Kuba K, Danilczyk U, Skovby F, Kleta R, Penninger JM, Verrey F (2008) Tissue-specific amino acid transporter partners ACE2 and collectrin differentially interact with Hartnup mutations. Gastroenterology (in press)

  13. Chen Z, Kennedy DJ, Wake KA, Zhuang L, Ganapathy V, Thwaites DT (2003) Structure, tissue expression pattern, and function of the amino acid transporter rat PAT2. Biochem Biophys Res Commun 304:747–754

    Article  PubMed  CAS  Google Scholar 

  14. Christensen HN (1990) Role of amino acid transport and countertransport in nutrition and metabolism. Physiol Rev 70:43–77

    PubMed  CAS  Google Scholar 

  15. Curthoys NP, Watford M (1995) Regulation of glutaminase activity and glutamine metabolism. Annu Rev Nutr 15:133–159

    Article  PubMed  CAS  Google Scholar 

  16. Daniel H, Kottra G (2004) The proton oligopeptide cotransporter family SLC15 in physiology and pharmacology. Pflugers Arch 447:610–618

    Article  PubMed  CAS  Google Scholar 

  17. Daniel H, Rubio-Aliaga I (2003) An update on renal peptide transporters. Am J Physiol Renal Physiol 284:F885–892

    PubMed  CAS  Google Scholar 

  18. Daniel H, Spanier B, Kottra G, Weitz D (2006) From bacteria to man: archaic proton-dependent peptide transporters at work. Physiology (Bethesda) 21:93–102

    CAS  Google Scholar 

  19. Danilczyk U, Sarao R, Remy C, Benabbas C, Stange G, Richter A, Arya S, Pospisilik JA, Singer D, Camargo SM, Makrides V, Ramadan T, Verrey F, Wagner CA, Penninger JM (2006) Essential role for collectrin in renal amino acid transport. Nature 444:1088–1091

    Article  PubMed  CAS  Google Scholar 

  20. Eslami B, Kinboshi M, Inoue S, Harada K, Inoue K, Koizumi A (2006) A nonsense polymorphism (Y319X) of the solute carrier family 6 member 18 (SLC6A18) gene is not associated with hypertension and blood pressure in Japanese. Tohoku J Exp Med 208:25–31

    Article  PubMed  CAS  Google Scholar 

  21. Fernandez E, Jimenez-Vidal M, Calvo M, Zorzano A, Tebar F, Palacin M, Chillaron J (2006) The structural and functional units of heteromeric amino acid transporters. The heavy subunit rBAT dictates oligomerization of the heteromeric amino acid transporters. J Biol Chem 281:26552–26561

    Article  PubMed  CAS  Google Scholar 

  22. Fernandez E, Torrents D, Chillaron J, Martin Del Rio R, Zorzano A, Palacin M (2003) Basolateral LAT-2 has a major role in the transepithelial flux of L-cystine in the renal proximal tubule cell line OK. J Am Soc Nephrol 14:837–847

    Article  PubMed  CAS  Google Scholar 

  23. Foltz M, Meyer A, Theis S, Demuth HU, Daniel H (2004) A rapid in vitro screening for delivery of peptide-derived peptidase inhibitors as potential drug candidates via epithelial peptide transporters. J Pharmacol Exp Ther 310:695–702

    Article  PubMed  CAS  Google Scholar 

  24. Hediger MA, Romero MF, Peng JB, Rolfs A, Takanaga H, Bruford EA (2004) The ABCs of solute carriers: physiological, pathological and therapeutic implications of human membrane transport proteins. Introduction. Pflugers Arch 447:465–468

    Article  PubMed  CAS  Google Scholar 

  25. Kanai Y, Hediger MA (1992) Primary structure and functional characterization of a high-affinity glutamate transporter. Nature 360:467–471

    Article  PubMed  CAS  Google Scholar 

  26. Kleta R, Romeo E, Ristic Z, Ohura T, Stuart C, Arcos-Burgos M, Dave MH, Wagner CA, Camargo SR, Inoue S, Matsuura N, Helip-Wooley A, Bockenhauer D, Warth R, Bernardini I, Visser G, Eggermann T, Lee P, Chairoungdua A, Jutabha P, Babu E, Nilwarangkoon S, Anzai N, Kanai Y, Verrey F, Gahl WA, Koizumi A (2004) Mutations in SLC6A19, encoding B0AT1, cause Hartnup disorder. Nat Genet 36:999–1002

    Article  PubMed  CAS  Google Scholar 

  27. Kowalczuk S, Broer A, Munzinger M, Tietze N, Klingel K, Broer S (2005) Molecular cloning of the mouse IMINO system: an Na+- and Cl−-dependent proline transporter. Biochem J 386:417–422

    Article  PubMed  CAS  Google Scholar 

  28. Kowalczuk S, Broer A, Tietze N, Vanslambrouck JM, Rasko JE, Broer S (2008) A protein complex in the brush-border membrane explains a Hartnup disorder allele. Faseb J 22:2880–2887

    Article  PubMed  CAS  Google Scholar 

  29. Malakauskas SM, Quan H, Fields TA, McCall SJ, Yu MJ, Kourany WM, Frey CW, Le TH (2007) Aminoaciduria and altered renal expression of luminal amino acid transporters in mice lacking novel gene collectrin. Am J Physiol Renal Physiol 292:F533–F544

    PubMed  Google Scholar 

  30. Matsuo H, Kanai Y, Kim JY, Chairoungdua A, Kim DK, Inatomi J, Shigeta Y, Ishimine H, Chaekuntode S, Tachampa K, Choi HW, Babu E, Fukuda J, Endou H (2002) Identification of a novel Na+-independent acidic amino acid transporter with structural similarity to the member of a heterodimeric amino acid transporter family associated with unknown heavy chains. J Biol Chem 277:21017–21026

    Article  PubMed  CAS  Google Scholar 

  31. Meyer C, Stumvoll M, Dostou J, Welle S, Haymond M, Gerich J (2002) Renal substrate exchange and gluconeogenesis in normal postabsorptive humans. Am J Physiol Endocrinol Metab 282:E428–434

    PubMed  CAS  Google Scholar 

  32. Moret C, Dave MH, Schulz N, Jiang JX, Verrey F, Wagner CA (2007) Regulation of renal amino acid transporters during metabolic acidosis. Am J Physiol Renal Physiol 292:F555–F566

    PubMed  Google Scholar 

  33. Murer H, Evers J, Kinne R (1976) Polarity of proximal tubular epithelial cells in relation to transepithelial transport. Curr Probl Clin Biochem 6:173–189

    PubMed  CAS  Google Scholar 

  34. Palacin M, Estevez R, Bertran J, Zorzano A (1998) Molecular biology of mammalian plasma membrane amino acid transporters. Physiol Rev 78:969–1054

    PubMed  CAS  Google Scholar 

  35. Pfeiffer R, Rossier G, Spindler B, Meier C, Kuhn L, Verrey F (1999) Amino acid transport of y+L-type by heterodimers of 4F2hc/CD98 and members of the glycoprotein-associated amino acid transporter family. Embo J 18:49–57

    Article  PubMed  CAS  Google Scholar 

  36. Quan H, Athirakul K, Wetsel WC, Torres GE, Stevens R, Chen YT, Coffman TM, Caron MG (2004) Hypertension and impaired glycine handling in mice lacking the orphan transporter XT2. Mol Cell Biol 24:4166–4173

    Article  PubMed  CAS  Google Scholar 

  37. Ramadan T, Camargo SM, Herzog B, Bordin M, Pos KM, Verrey F (2007) Recycling of aromatic amino acids via TAT1 allows efflux of neutral amino acids via LAT2-4F2hc exchanger. Pflugers Arch 454:507–516

    Article  PubMed  CAS  Google Scholar 

  38. Ramadan T, Camargo SM, Summa V, Hunziker P, Chesnov S, Pos KM, Verrey F (2006) Basolateral aromatic amino acid transporter TAT1 (Slc16a10) functions as an efflux pathway. J Cell Physiol 206:771–779

    Article  PubMed  CAS  Google Scholar 

  39. Romeo E, Dave MH, Bacic D, Ristic Z, Camargo SM, Loffing J, Wagner CA, Verrey F (2006) Luminal kidney and intestine SLC6 amino acid transporters of B0AT-cluster and their tissue distribution in Mus musculus. Am J Physiol Renal Physiol 290:F376–383

    Article  PubMed  CAS  Google Scholar 

  40. Rossier G, Meier C, Bauch C, Summa V, Sordat B, Verrey F, Kuhn LC (1999) LAT2, a new basolateral 4F2hc/CD98-associated amino acid transporter of kidney and intestine. J Biol Chem 274:34948–34954

    Article  PubMed  CAS  Google Scholar 

  41. Sagne C, Agulhon C, Ravassard P, Darmon M, Hamon M, El Mestikawy S, Gasnier B, Giros B (2001) Identification and characterization of a lysosomal transporter for small neutral amino acids. Proc Natl Acad Sci USA 98:7206–7211

    Article  PubMed  CAS  Google Scholar 

  42. Seow HF, Broer S, Broer A, Bailey CG, Potter SJ, Cavanaugh JA, Rasko JE (2004) Hartnup disorder is caused by mutations in the gene encoding the neutral amino acid transporter SLC6A19. Nat Genet 36:1003–1007

    Article  PubMed  CAS  Google Scholar 

  43. Shayakul C, Kanai Y, Lee WS, Brown D, Rothstein JD, Hediger MA (1997) Localization of the high-affinity glutamate transporter EAAC1 in rat kidney. Am J Physiol 273:F1023–1029

    PubMed  CAS  Google Scholar 

  44. Solbu TT, Boulland JL, Zahid W, Lyamouri Bredahl MK, Amiry-Moghaddam M, Storm-Mathisen J, Roberg BA, Chaudhry FA (2005) Induction and targeting of the glutamine transporter SN1 to the basolateral membranes of cortical kidney tubule cells during chronic metabolic acidosis suggest a role in pH regulation. J Am Soc Nephrol 16:869–877

    Article  PubMed  CAS  Google Scholar 

  45. Stevens BR, Ross HJ, Wright EM (1982) Multiple transport pathways for neutral amino acids in rabbit jejunal brush border vesicles. J Membr Biol 66:213–225

    Article  PubMed  CAS  Google Scholar 

  46. Takanaga H, Mackenzie B, Suzuki Y, Hediger MA (2005) Identification of mammalian proline transporter SIT1 (SLC6A20) with characteristics of classical system imino. J Biol Chem 280:8974–8984

    Article  PubMed  CAS  Google Scholar 

  47. Tanner LM, Nanto-Salonen K, Venetoklis J, Kotilainen S, Niinikoski H, Huoponen K, Simell O (2007) Nutrient intake in lysinuric protein intolerance. J Inherit Metab Dis 30:716–721

    Article  PubMed  CAS  Google Scholar 

  48. Tessari P, Garibotto G (2000) Interorgan amino acid exchange. Curr Opin Clin Nutr Metab Care 3:51–57

    Article  PubMed  CAS  Google Scholar 

  49. Torras-Llort M, Torrents D, Soriano-Garcia JF, Gelpi JL, Estevez R, Ferrer R, Palacin M, Moreto M (2001) Sequential amino acid exchange across b(0,+)-like system in chicken brush border jejunum. J Membr Biol 180:213–220

    Article  PubMed  CAS  Google Scholar 

  50. Torrents D, Estevez R, Pineda M, Fernandez E, Lloberas J, Shi YB, Zorzano A, Palacin M (1998) Identification and characterization of a membrane protein (y+L amino acid transporter-1) that associates with 4F2hc to encode the amino acid transport activity y+L. A candidate gene for lysinuric protein intolerance. J Biol Chem 273:32437–32445

    Article  PubMed  CAS  Google Scholar 

  51. Torrents D, Mykkanen J, Pineda M, Feliubadalo L, Estevez R, de Cid R, Sanjurjo P, Zorzano A, Nunes V, Huoponen K, Reinikainen A, Simell O, Savontaus ML, Aula P, Palacin M (1999) Identification of SLC7A7, encoding y+LAT-1, as the lysinuric protein intolerance gene. Nat Genet 21:293–296

    Article  PubMed  CAS  Google Scholar 

  52. Utsunomiya-Tate N, Endou H, Kanai Y (1996) Cloning and functional characterization of a system ASC-like Na+-dependent neutral amino acid transporter. J Biol Chem 271:14883–14890

    Article  PubMed  CAS  Google Scholar 

  53. van de Poll MC, Soeters PB, Deutz NE, Fearon KC, Dejong CH (2004) Renal metabolism of amino acids: its role in interorgan amino acid exchange. Am J Clin Nutr 79:185–197

    PubMed  Google Scholar 

  54. Verrey F (2003) System L: heteromeric exchangers of large, neutral amino acids involved in directional transport. Pflugers Arch 445:529–533

    PubMed  CAS  Google Scholar 

  55. Verrey F, Jack DL, Paulsen IT, Saier MH Jr., Pfeiffer R (1999) New glycoprotein-associated amino acid transporters. J Membr Biol 172:181–192

    Article  PubMed  CAS  Google Scholar 

  56. Verrey F, Ristic Z, Romeo E, Ramadan T, Makrides V, Dave MH, Wagner CA, Camargo SM (2005) Novel renal amino acid transporters. Annu Rev Physiol 67:557–572

    Article  PubMed  CAS  Google Scholar 

  57. Wright EM (2001) Renal Na(+)-glucose cotransporters. Am J Physiol Renal Physiol 280:F10–18

    PubMed  CAS  Google Scholar 

  58. Yamashita A, Singh SK, Kawate T, Jin Y, Gouaux E (2005) Crystal structure of a bacterial homologue of Na+/Cl−-dependent neurotransmitter transporters. Nature 437:215–223

    Article  PubMed  CAS  Google Scholar 

  59. Yernool D, Boudker O, Jin Y, Gouaux E (2004) Structure of a glutamate transporter homologue from Pyrococcus horikoshii. Nature 431:811–818

    Article  PubMed  CAS  Google Scholar 

  60. Zerangue N, Kavanaugh MP (1996) Flux coupling in a neuronal glutamate transporter. Nature 383:634–637

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The laboratory of FV is supported by the Swiss NF grant 31-108021/1. DS was recipient of a fellowship from the University Research Priority Program “Integrative Human Physiology” at the University of Zurich.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Verrey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verrey, F., Singer, D., Ramadan, T. et al. Kidney amino acid transport. Pflugers Arch - Eur J Physiol 458, 53–60 (2009). https://doi.org/10.1007/s00424-009-0638-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-009-0638-2

Keywords

Navigation