Skip to main content

Advertisement

Log in

Ocular fundus auto-fluorescence observations at different wavelengths in patients with age-related macular degeneration and diabetic retinopathy

  • Retinal Disorders
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Background

Post-translational protein modification by lipid peroxidation products or glycation is a feature of aging as well as pathologic processes in postmitotic cells at the ocular fundus exposed to an oxidative environment. The accumulation of modified proteins such as those found in lipofuscin and advanced glycation end products (AGEs) contribute greatly to the fundus auto-fluorescence. The distinct fluorescence spectra of lipofuscin and AGE enable their differentiation in multispectral fundus fluorescence imaging.

Method

A dual-centre consecutive case series of 78 pseudo-phacic patients is reported. Digital colour fundus photographs as well as auto-fluorescence images were taken from 33 patients with age related macular degeneration (AMD), 13 patients with diabetic retinopathy (RD), or from 32 cases without pathologic findings (controls). Fluorescence was excited at 475–515 nm or 476–604 nm and recorded in the emission bands 530–675 nm or 675–715 nm, respectively. Fluorescence images excited at 475–515 nm were taken by a colour CCD-camera (colour-fluorescence imaging) enabling the separate recording of green and red fluorescence. The ratio of green versus red fluorescence was calculated within a representative region of each image.

Results

The 530–675 nm auto-fluorescence in AMD patients was dominated by the red emission (green vs. red ratio, g/r = 0.861). In comparison, the fluorescence of the diabetics was green-shifted (g/r = 0.946; controls: g/r = 0.869). Atrophic areas (geographic atrophy, laser scars) showed massive hypo-fluorescence in both emission bands. Hyper-fluorescent drusen and exudates, unobtrusive in the colour fundus images as well as in the fluorescence images with emission >667 nm, showed an impressive green-shift in the colour-fluorescence image.

Conclusions

Lipofuscin is the dominant fluorophore at long wavelengths (>675 nm or red channel of the colour fluorescence image). In the green spectral region, we found an additional emission of collagen and elastin (optic disc, sclera) as well as deposits in drusen and exudates. The green shift of the auto-fluorescence in RD may be a hint of increased AGE concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Arend O, Weiter JJ, Goger DG, Delori FC (1995) In vivo Fundus Fluoreszenzmessungen bei Patienten mit altersbedingtrer Makuladegeneration. Der Ophthalmologe 92:647–653

    PubMed  CAS  Google Scholar 

  2. Bindewald-Wittich A, Han M, Schmitz-Valckenberg S, Snyder SR, Giese G, Bille JF, Holz FG (2006) Two-photon-excited fluorescence imaging of human RPE cells with a femtosecond Ti:sapphire laser. Invest Ophthalmol Vis Sci 47:4553–4557

    Article  PubMed  Google Scholar 

  3. Bindewald A, Bird AC, Dandekar SS, Dolar-Szczasny J, Dreyhaupt J, Fitzke FW, Einbock W, Holz FG, Jorzik JJ, Keilhauer C, Lois N, Mlynski J, Pauleikhoff D, Staurenghi G, Wolf S (2005) Classification of fundus autofluorescence patterns in early age-related macular disease. Invest Ophthalmol Vis Sci 46:3309–3314

    Article  PubMed  Google Scholar 

  4. Bird AC, Bressler NM, Bressler SB, Chisholm IH, Coscas G, Davis MD, de Jong PTVM, Claver CCW, Klein BEK, Klein R, Mitchell P, Sarks JP, Sarks SH, Soubrane G, Taylor, Vingerling JR (1995) An international classification and grading system for age-related maculopathy and age-related macular degeneration. Surv Ophthalmol 39:367–374

    Article  PubMed  CAS  Google Scholar 

  5. Delori FC (1994) Spectrometer for noninvasive measurement of intrinsic fluorescence and reflectance of ocular fundus. Applied Optics 33:7439–7452

    Article  Google Scholar 

  6. Delori FC, Dorey KC, Staurenghi G, Arend O, Goger DC, Weiter JJ (1995) In vivo fluorescence of the ocular fundus exhibits retinal pigment epithelium lipofuscin characteristics. Invest Ophthalmol 36:718–729

    CAS  Google Scholar 

  7. Delori FC, Fleckner MR, Goger DG, Weiter JJ, Dorey CK (2000) Autofluorescence distribution associated with drusen in age-related macular degeneration. Invest Ophthalmol Vis Sci 41:496–504

    PubMed  CAS  Google Scholar 

  8. Delori FC, Goger DG, Dorey CK (2001) Age-related accumulation and spatial distribution of lipofuscin in RPE of normal subjects. Invest Ophthalmol Vis Sci 42:1855–1866

    PubMed  CAS  Google Scholar 

  9. Dillon J, Wang Z, Avalle LB, Gaillard ER (2004) The photochemical oxidation of A2E results in the formation of a 5,8,5′,8′-bis-furanoid oxide. Exp Eye Res 79:537–542

    Article  PubMed  CAS  Google Scholar 

  10. Einbock W, Moessner A, Schnurrbusch UE, Holz FG, Wolf S (2005) Changes in fundus autofluorescence in patients with age-related maculopathy. Correlation to visual function: a prospective study. Graefes Arch Clin Exp Ophthalmol 243:300–355

    Article  PubMed  Google Scholar 

  11. Eldred GE, Katz ML (1988) Fluorophores of the human retinal pigment epithelium: separation and spectral characterization. Exp Eye Res 47:71–86

    Article  PubMed  CAS  Google Scholar 

  12. ETDRS Study Group (1991) Grading diabetic retinopathy from stereoscopic color fundus photographs - an extension of the modified airlie house classification - ETDRS Report Number 10. Ophthalmology 98:786–806

    Google Scholar 

  13. Hammer M, Nagel E, Schweitzer D, Richter S, Schweitzer F, Konigsdorffer E, Strobel J (2004) Spektrale Differenzierung in Eigenfluoreszenzbildern des Augenhintergrunds von Patienten mit altersabhängiger Makuladegeneration. Ophthalmologe 101:1189–1193

    Article  PubMed  CAS  Google Scholar 

  14. Hammer M, Richter S, Guehrs KH, Schweitzer D (2006) Retinal pigment epithelium cell damage by A2-E and its photo-derivatives. Mol Vis 12:1348–1354

    PubMed  CAS  Google Scholar 

  15. Handa JT, Verzijl N, Matsunaga H, Aotaki-Keen A, Lutty GA, te Koppele JM, Miyata T, Hjelmeland LM (1999) Increase in the advanced glycation end product pentosidine in Bruch’s membrane with age. Invest Ophthalmol Vis Sci 40:775–779

    PubMed  CAS  Google Scholar 

  16. Holz FG (2001) Autofluoreszenz-Imaging der Makula. Der Ophthalmologe 98:10–18

    Article  PubMed  CAS  Google Scholar 

  17. Holz FG, Bellman C, Staudt S, Schutt F, Volcker HE (2001) Fundus autofluorescence and development of geographic atrophy in age-related macular degeneration. Invest Ophthalmol Vis Sci 42:1051–1056

    PubMed  CAS  Google Scholar 

  18. Holz FG, Bellmann C, Margaritidis M, Schutt F, Otto TP, Volcker HE (1999) Patterns of increased in vivo fundus autofluorescence in the junctional zone of geographic atrophy of the retinal pigment epithelium associated with age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol 237:145–152

    Article  PubMed  CAS  Google Scholar 

  19. Hwang JC, Chan JW, Chang S, Smith RT (2006) Predictive value of fundus autofluorescence for development of geographic atrophy in age-related macular degeneration. Invest Ophthalmol Vis Sci 47:2655–2661

    Article  PubMed  Google Scholar 

  20. Ishibashi T, Murata T, Hanagai M, Nagai R, Horiuchi S, Lopez PF, Hinton DR, Ryan SJ (1998) Advanced glycation end products in age related macular degeneration. Arch Ophthalmol 116:1629–1632

    PubMed  CAS  Google Scholar 

  21. Keilhauer CN, Delori FC (2006) Near-infrared autofluorescence imaging of the fundus: visualization of ocular melanin. Invest Ophthalmol Vis Sci 47:3556–3564

    Article  PubMed  Google Scholar 

  22. Kopitz J, Holz FG, Kaemmerer E, Schutt F (2004) Lipids and lipid peroxidation products in the pathogenesis of age-related macular degeneration. Biochimie 86:825–831

    Article  PubMed  CAS  Google Scholar 

  23. Lois N, Owens SL, Coco R, Hopkins J, Fitzke FW, Bird AC (2002) Fundus autofluorescence in patients with age-related macular degeneration and high risk of visual loss. Am J Ophthalmol 133:341–349

    Article  PubMed  Google Scholar 

  24. Marmorstein AD, Marmorstein LY, Sakaguchi H, Hollyfield JG (2002) Spectral profiling of autofluorescence associated with lipofuscin, Bruch’s membrane, and sub-RPE deposits in normal and AMD eyes. Invest Ophthalmol Vis Sci 43:2435–2441

    PubMed  Google Scholar 

  25. Munch G, Thome J, Foley P, Schinzel R, Riederer P (1997) Advanced glycation endproducts in ageing and Alzheimer’s disease. Brain Res Brain Res Rev 23:134–143

    Article  PubMed  CAS  Google Scholar 

  26. Radu RA, Mata NL, Bagla A, Travis GH (2004) Light exposure stimulates formation of A2E oxiranes in a mouse model of Stargardt’s macular degeneration. Proc Natl Acad Sci USA 101:5928–5933

    Article  PubMed  CAS  Google Scholar 

  27. Sarks SH (1976) Ageing and degeneration in the macular region: a clinico-pathological study. Br J Ophthalmol 60:324–341

    Article  PubMed  CAS  Google Scholar 

  28. Schmitz-Valckenberg S, Bindewald-Wittich A, Dolar-Szczasny J, Dreyhaupt J, Wolf S, Scholl HP, Holz FG (2006) Correlation between the area of increased autofluorescence surrounding geographic atrophy and disease progression in patients with AMD. Invest Ophthalmol Vis Sci 47:2648–2654

    Article  PubMed  Google Scholar 

  29. Schmitz-Valckenberg S, Bultmann S, Dreyhaupt J, Bindewald A, Holz FG, Rohrschneider K (2004) Fundus autofluorescence and fundus perimetry in the junctional zone of geographic atrophy in patients with age-related macular degeneration. Invest Ophthalmol Vis Sci 45:4470–4476

    Article  PubMed  Google Scholar 

  30. Scholl HP, Bellmann C, Dandekar SS, Bird AC, Fitzke FW (2004) Photopic and scotopic fine matrix mapping of retinal areas of increased fundus autofluorescence in patients with age-related maculopathy. Invest Ophthalmol Vis Sci 45:574–583

    Article  PubMed  Google Scholar 

  31. Schütt F, Bergmann M, Holz FG, Kopitz J (2003) Proteins modified by malondialdehyde, 4-hydroxynonenal, or advanced glycation end products in lipofuscin of human retinal pigment epithelium. Invest Ophthalmol Vis Sci 44:3663–3668

    Article  PubMed  Google Scholar 

  32. Schweitzer D, Hammer M, Schweitzer F, Anders R, Doebbecke T, Schenke S, Gaillard ER (2004) In vivo measurement of time - resolved autofluorescence at the human fundus. J Biomed Opt 9:1214–1222

    Article  PubMed  Google Scholar 

  33. Schweitzer D, Hammer M, Schweitzer F, Schenke S (2006) In vivo autofluorescence lifetime imaging at the fundus of the human eye. In: Manns F, Söderberg PG, Ho A (eds) Ophthalmoic technologies XVI. SPIE, San Jose, pp 613808-1–613808-10

    Google Scholar 

  34. Schweitzer D, Hammer M, Schweitzer F, Schenke S, Gaillard ER (2003) Evaluation of time-resolved autofluorescence images of the ocular fundus. In: Wagniers GA (ed) Diagnostic optical spectroscopy in biomedicine II. Proceedings of SPIE, Munich, 24-25 June 2003, 5141:8–17

  35. Schweitzer D, Kolb A, Hammer M (2001) Autofluorescence lifetime measurements in images of the human ocular fundus. In: Papazoglou TG, Wagnieres, GA (eds) Diagnostic optical spectroscopy in biomedicine. Proceedings of SPIE, October 2001, 4432:29–39

  36. Schweitzer D, Kolb A, Hammer M, Anders R (2002) Zeitaufgelöste Messung der Autofluoreszenz - Ein Werkzeug zur Erfassung von Stoffwechselvorgängen. Ophthalmologe 99:776–779

    Google Scholar 

  37. Schweitzer D, Schenke S, Hammer M, Schweitzer F, Jentsch S, Birckner E, Becker W, Bergmann A (2007) Towards metabolic mapping of the human retina. Microsc Res Tech. DOI 10.1002/jemt.20427

  38. Smith RT, Chan JK, Busuoic M, Sivagnanavel V, Bird AC, Chong NV (2006) Autofluorescence characteristics of early, atrophic, and high-risk fellow eyes in age-related macular degeneration. Invest Ophthalmol Vis Sci 47:5495–5504

    Article  PubMed  Google Scholar 

  39. Solbach U, Keilhauer C, Knabben H, Wolf S (1997) Imaging of retinal autofluorescence in patients with age-related macular degeneration. Retina 17:385–389

    PubMed  CAS  Google Scholar 

  40. Spaide RF (2003) Fundus autofluorescence and age-related macular degeneration. Ophthalmology 110:392–399

    Article  PubMed  Google Scholar 

  41. Sparrow JR, Boulton M (2005) RPE lipofuscin and its role in retinal pathobiology. Exp Eye Res 80:595–606

    Article  PubMed  CAS  Google Scholar 

  42. Sparrow JR, Cai B (2001) Blue light-induced apoptosis of A2E-containing RPE: involvement of caspase-3 and protection by Bcl-2. Invest Ophthalmol Vis Sci 42:1356–1362

    PubMed  CAS  Google Scholar 

  43. Sparrow JR, Villmer-Snarr HR, Zhou J, Jang YP, Jockusch S, Itagaki Y, Nakanishi K (2003) A2E-epoxides damage DNA in retinal pigment epithelial cells. J Biol Chem 278:18207–18213

    Article  PubMed  CAS  Google Scholar 

  44. Staudt S, Bellmann C, Schütt F, Lösch A, Holz FG (2000) Various intra- and extracellular fluorophores other than RPE-lipofuscin contribute to variations in spacial distribution and intensity in topographic fundus autofluorescence. Invest Ophthalmol Vis Sci 41(Suppl):168

    Google Scholar 

  45. Stitt AW (2001) Advanced glycation: an important pathological event in diabetic and age related ocular disease. Br J Ophthalmol 85:746–753

    Article  PubMed  CAS  Google Scholar 

  46. Suter M, Reme C, Grimm C, Wenzel A, Jaattela M, Esser P, Kociok N, Leist M, Richter C (2000) Age-related macular degeneration. The lipofusion component N-retinyl-N-retinylidene ethanolamine detaches proapoptotic proteins from mitochondria and induces apoptosis in mammalian retinal pigment epithelial cells. J Biol Chem 275:39625–39630

    Article  PubMed  CAS  Google Scholar 

  47. von Rückmann A, Fitzke FW, Bird AC (1995) Clinical application of in vivo imaging of fundus autofluorescence. Invest Ophthalmol 36:238

    Google Scholar 

  48. von Rückmann A, Fitzke FW, Bird AC (1995) Distribution of fundus autofluorescence with a scanning laser ophthalmoscope. Brit J Ophthalmol 79:407–412

    Article  Google Scholar 

  49. von Rückmann A, Fitzke FW, Bird AC (1997) Fundus autofluorescence in age-related macular disease imaged with a laser scanning ophthalmoscope. Invest Ophthalmol Vis Sci 38:478–486

    Google Scholar 

  50. von Rückmann A, Fitzke FW, Bird AC (1997) In vivo fundus autofluorescence in macular dystrophies. Arch Ophthalmol 115:609–615

    Google Scholar 

  51. von Rückmann A, Fitzke FW, Bird AC (1999) Distribution of pigment epithelium autofluorescence in retinal disease state recorded in vivo and its change over time. Graefes Arch Clin Exp Ophthalmol 237:1–9

    Article  Google Scholar 

  52. von Rückmann A, Fitzke FW, Fan J, Halfyard A, Bird AC (2002) Abnormalities of fundus autofluorescence in central serous retinopathy. Am J Ophthalmol 133:780–786

    Article  Google Scholar 

  53. Yamada Y, Ishibashi K, Ishibashi K, Bhutto IA, Tian J, Lutty GA, Handa JT (2006) The expression of advanced glycation endproduct receptors in rpe cells associated with basal deposits in human maculas. Exp Eye Res 82:840–848

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the gift of histological sections from a donor eye of an AMD patient by Dr. Elizabeth Gaillard from Northern Illinois University at DeKalb.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Hammer.

Additional information

None of the authors has any financial relationship. All primary data are under full control of the authors and may be reviewed upon request.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hammer, M., Königsdörffer, E., Liebermann, C. et al. Ocular fundus auto-fluorescence observations at different wavelengths in patients with age-related macular degeneration and diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol 246, 105–114 (2008). https://doi.org/10.1007/s00417-007-0639-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-007-0639-9

Keywords

Navigation