Skip to main content
Log in

Dopamine receptor mapping with PET imaging in Parkinson’s disease

  • Review
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Parkinson’s disease (PD) is a chronic neurodegenerative disorder characterised pathologically by the loss of dopaminergic neurons in the substantia nigra pars compacta. These neurons project to the striatum, and their loss leads to alterations in the activity of the neural circuits that regulate movement. The striatal output of the circuit related to the control of movement is mediated by two pathways: the direct striatal pathway, which is mediated through facilitation of D1 receptors, and the indirect striatal pathway, mediated through D2 receptors. Positron emission tomography (PET) molecular imaging is a powerful in vivo technique in which using selective dopaminergic radioligands has been employed to investigate the dopaminergic system in humans. In this article we aim to review the role of PET imaging in understanding the postsynaptic dopaminergic mechanisms in PD. PET studies have allowed us to gain important insights into the functions of the dopaminergic system, the mechanisms of drug-induced motor and non-motor complications, and the placebo effect in PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

CNS:

Central nervous system

DAT:

Dopamine transporter

L-dopa:

L-3,4-dihydroxyphenylalanine

PET:

Positron emission tomography

UPDRS:

Unified Parkinson’s disease rating scale

References

  1. Lees AJ, Hardy J, Revesz T (2009) Parkinson’s disease. Lancet 373(9680):2055–2066

    Article  CAS  PubMed  Google Scholar 

  2. Marsden CD (1982) Basal ganglia disease. Lancet 2(8308):1141–1147

    Article  CAS  PubMed  Google Scholar 

  3. Jellinger KA (1991) Pathology of Parkinson’s disease. Mol Chem Neuropathol 3:153–197

    Article  Google Scholar 

  4. Samii A, Nutt JG, Ransom BR (2004) Parkinson’s disease. Lancet 363(9423):1783–1793

    Article  CAS  PubMed  Google Scholar 

  5. Levy G, Tang MX, Cote LJ, Louise ED, Alfaro B, Mejia H, Stern Y, Marder K (2000) Motor impairment in Parkinson’s disease: relationship to incident dementia and age. Neurology 55:539–544

    Article  CAS  PubMed  Google Scholar 

  6. Chesselet MF, Delfs JM (1999) Basal ganglia and movement disorders: an update. Trends Neurosci 19:417–422

    Article  Google Scholar 

  7. Hamani C, Lozano AM (2003) Physiology and pathophysiology of Parkinson’s disease. Ann NY Acad Sci 991:15–21

    Article  PubMed  Google Scholar 

  8. Politis M, Piccini P (2012) Positron emission tomography imaging in neurological disorders. J Neurol 259(9):1769–1780

    Article  PubMed  Google Scholar 

  9. Phelps ME (2000) Positron emission tomography provides molecular imaging of biological processes. PNAS 97:9226–9233

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Halldin C, Stone-Elander S, Farde L, Ehrin E, Fasth KJ, Långström B, Sedvall G (1986) Preparation of 11C-labelled SCH 23390 for the in vivo study of dopamine D-1 receptors using positron emission tomography. Int J Rad Appl Instrum A 37(10):1039–1043

    Article  CAS  PubMed  Google Scholar 

  11. Slifstein M, Kegeles LS, Gonzales R, Frankle WG, Xu X, Laruelle M, Abi-Dargham A (2007) [11C]NNC 112 selectivity for dopamine D1 and serotonin 5-HT(2A) receptors: a PET study in healthy human subjects. J Cereb Blood Flow Metab 27(10):1733–1741

    Article  CAS  PubMed  Google Scholar 

  12. Chou YH, Karlsson P, Halldin C, Olsson H, Farde L (1999) A PET study of D(1)-like dopamine receptor ligand binding during altered endogenous dopamine levels in the primate brain. Psychopharmacology 146(2):220–227

    Article  CAS  PubMed  Google Scholar 

  13. Rinne JO, Laihinen A, Någren K, Bergman J, Haaparanta M, Solin O, Ruotsalainen U, Rinne UK (1991) Positron emission tomography of brain dopamine D-1 receptors with 11C-SCH 23390 in Parkinson’s disease. Acta Radiol Suppl 376:152

    CAS  PubMed  Google Scholar 

  14. Ouchi Y, Kanno T, Okada H, Yoshikawa E, Futatsubashi M, Nobezawa S, Torizuka T, Sakamoto M (1999) Presynaptic and postsynaptic dopaminergic binding densities in the nigrostriatal and mesocortical systems in early Parkinson’s disease: a double-tracer positron emission tomography study. Ann Neurol 46(5):723–731

    Article  CAS  PubMed  Google Scholar 

  15. Hurley MJ, Mash DC, Jenner P (2001) Dopamine D(1) receptor expression in human basal ganglia and changes in Parkinson’s disease. Brain Res Mol Brain Res 87(2):271–279

    Article  CAS  PubMed  Google Scholar 

  16. Shinotoh H, Inoue O, Hirayama K, Aotsuka A, Asahina M, Suhara T, Yamazaki T, Tateno Y (1993) Dopamine D1 receptors in Parkinson’s disease and striatonigral degeneration: a positron emission tomography study. J Neurol Neurosurg Psychiatry 56(5):467–472

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Turjanski N, Lees AJ, Brooks DJ (1997) In vivo studies on striatal dopamine D1 and D2 site binding in L-DOPA treated Parkinson’s disease patients with and without dyskinesias. Neurology 49:717–723

    Article  CAS  PubMed  Google Scholar 

  18. Cropley VL, Fujita M, Bara-Jimenez W, Brown AK, Zhang XY, Sangare J, Herscovitch P, Pike VW, Hallett M, Nathan PJ, Innis RB (2008) Pre- and post-synaptic dopamine imaging and its relation with frontostriatal cognitive function in Parkinson disease: PET studies with [11C]NNC 112 and [18F]FDOPA. Psychiatry Res 163(2):171–182

    Article  CAS  PubMed  Google Scholar 

  19. Laihinen AO, Rinne JO, Ruottinen HM, Någren KA, Lehikoinen PK, Oikonen VJ, Ruotsalainen UH, Rinne UK (1994) PET studies on dopamine D1 receptors in the human brain with carbon-11-SCH 39166 and carbon-11-NNC 756. J Nucl Med 35(12):1916–1920

    CAS  PubMed  Google Scholar 

  20. Ekelund J, Slifstein M, Narendran R, Guillin O, Belani H, Guo NN, Hwang Y, Hwang DR, Abi-Dargham A, Laruelle M (2007) In vivo DA D(1) receptor selectivity of NNC 112 and SCH 23390. Mol Imaging Biol 9(3):117–125

    Article  PubMed  Google Scholar 

  21. Catafau AM, Searle GE, Bullich S, Gunn RN, Rabiner EA, Herance R, Radua J, Farre M, Laruelle M (2010) Imaging cortical dopamine D1 receptors using [11C]NNC112 and ketanserin blockade of the 5-HT 2A receptors. J Cereb Blood Flow Metab 30(5):985–993

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Farde L, Ehrin E, Eriksson L, Greitz T, Hall H, Hedström CG, Litton JE, Sedvall G (1985) Substituted benzamides as ligands for visualization of dopamine receptor binding in the human brain by positron emission tomography. Proc Natl Acad Sci USA 82(11):3863–3867

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Suzuki K, Inoue O, Tamate K, Mikado F (1990) Production of 3-N-[11C]methylspiperone with high specific activity and high radiochemical purity for PET studies: suppression of its radiolysis. Int J Rad Appl Instrum A 41(6):593–599

    Article  CAS  PubMed  Google Scholar 

  24. Mukherjee J, Yang ZY, Brown T, Roemer J, Cooper M (1996) 18F-desmethoxyfallypride: a fluorine-18 labeled radiotracer with properties similar to carbon-11 raclopride for PET imaging studies of dopamine D2 receptors. Life Sci 59(8):669–678

    Article  CAS  PubMed  Google Scholar 

  25. Stark D, Piel M, Hübner H, Gmeiner P, Gründer G, Rösch F (2007) In vitro affinities of various halogenated benzamide derivatives as potential radioligands for non-invasive quantification of D(2)-like dopamine receptors. Bioorg Med Chem 15(21):6819–6829

    Article  CAS  PubMed  Google Scholar 

  26. Hwang DR, Kegeles LS, Laruelle M (2000) (-)-N-[(11)C]propyl-norapomorphine: a positron-labeled dopamine agonist for PET imaging of D(2) receptors. Nucl Med Biol 27(6):533–539

    Article  CAS  PubMed  Google Scholar 

  27. Finnema SJ, Seneca N, Farde L, Shchukin E, Sóvágó J, Gulyás B, Wikström HV, Innis RB, Neumeyer JL, Halldin C (2005) A preliminary PET evaluation of the new dopamine D2 receptor agonist [11C]MNPA in cynomolgus monkey. Nucl Med Biol 32(4):353–360

    Article  CAS  PubMed  Google Scholar 

  28. Laruelle M (2000) Imaging synaptic neurotransmission with in vivo binding competition techniques: a critical review. J Cereb Blood Flow Metab 20:423–451

    Article  CAS  PubMed  Google Scholar 

  29. Dentresangle C, Veyre L, le Bars Pierre C, Lavenne F, Pollak P, Guerin J, Froment JC, Brousolle E (1999) Striatal D2 dopamine receptor status in Parkinson’s disease: an 18F DOPA and 11C-raclopride PET study. Mov Disord 14(6):1025–1030

    Article  CAS  PubMed  Google Scholar 

  30. Kaasinen V, Ruottinen HM, Nagren K, Lehikoinen P, Oikonen V, Rinne JO (2000) Upregulation of putaminal dopamine D2 receptors in early Parkinson’s disease: a comparative PET study with 11C-raclopride and 11C-methylspiperone. J Nucl Med 41:65–70

    CAS  PubMed  Google Scholar 

  31. Sawle GV, Playford ED, Brooks DJ, Quinn N, Frackowiak RS (1993) Asymmetrical presynaptic and postsynaptic changes in the striatal dopamine projection in Dopa naïve parkinsonism. Diagnostic implications of the D2 receptor status. Brain 116:853–867

    Article  PubMed  Google Scholar 

  32. Antonini A, Schwarz J, Oertel WH, Pogarell O, Leenders KL (1997) Long-term changes of striatal dopamine D2 receptors in patients with Parkinson’s disease: a study with positron emission tomography and [11C]raclopride. Mov Disord 12(1):33–38

    Article  CAS  PubMed  Google Scholar 

  33. Rinne JO, Laihinen A, Någren K, Bergman J, Solin O, Haaparanta M, Ruotsalainen U, Rinne UK (1990) PET demonstrates different behaviour of striatal dopamine D-1 and D-2 receptors in early Parkinson’s disease. J Neurosci Res 27(4):494–499

    Article  CAS  PubMed  Google Scholar 

  34. Rinne JO, Laihinen A, Rinne UK, Någren K, Bergman J, Ruotsalainen U (1993) PET study on striatal dopamine D2 receptor changes during the progression of early Parkinson’s disease. Mov Disord 8(2):134–138

    Article  CAS  PubMed  Google Scholar 

  35. Rinne JO, Laihinen A, Ruottinen H, Ruotsalainen U, Någren K, Lehikoinen P, Oikonen V, Rinne UK (1995) Increased density of dopamine D2 receptors in the putamen, but not in the caudate nucleus in early Parkinson’s disease: a PET study with [11C]raclopride. J Neurol Sci 132(2):156–161

    Article  CAS  PubMed  Google Scholar 

  36. Schwarting RK, Huston JP (1996) Unilateral 6 hydroxy dopamine lesions in meso striatal dopamine neurons and their physiological sequelae. Prog Neurobiol 49:215–266

    Article  CAS  PubMed  Google Scholar 

  37. Brooks DJ, Ibanez V, Saule GV, Playford ED, Quinn N, Mathias CJ, Lees AJ, Marsden CD, Bannister R, Frackowiak RS (1992) Striatal D2 receptor status in patients with Parkinson’s disease, striatonigral degeneration and progressive supranuclear palsy, measured with 11C-raclopride and positron emission tomography. Ann Neurol 31:184–192

    Article  CAS  PubMed  Google Scholar 

  38. Antonini A, Schwarz J, Oertel WH, Beer HF, Madeja UD, Leenders KL (1994) [11C]raclopride and positron emission tomography in previously untreated patients with Parkinson’s disease: influence of L-dopa and lisuride therapy on striatal dopamine D2-receptors. Neurology 44(7):1325–1329

    Article  CAS  PubMed  Google Scholar 

  39. Thobois S, Vingerhoets F, Fraix V, Xie-Brustolin J, Mollion H, Costes N, Mertens P, Benebid AL, Pollak P, Broussolle E (2004) Role of dopaminergic treatment in dopamine receptor downregulation in advanced Parkinson’s disease: a positron emission tomographic study. Arch Neurol 61(11):1705–2179

    Article  PubMed  Google Scholar 

  40. Kempster PA, Gibb WRG, Stern GM, Lees AJ (1989) Asymmetry of substantia nigra neuronal loss in Parkinson’s disease and its relevance to the mechanism of levodopa related motor fluctuations. J Neurol Neurosurg Psychiatry 52:72–76

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. de la Fuente Fernandez R, Pal PK, Vingerhoets FJG, Kishore A, Schulzer M, Mak EK, Ruth TJ, Snow BJ, Calne DB, Stoessl AJ (2000) Evidence for impaired presynaptic dopamine function in Parkinsonian patients with motor fluctuations. J Neural Trasm 107:49–57

    Article  Google Scholar 

  42. Landwehrmeyer B, Mengod G, Palacios JM (1993) Dopamine D3 receptor mRNA and binding sites in human brain. Brain Res Mol Brain Res 18:187–192

    Article  CAS  PubMed  Google Scholar 

  43. Murray AM, Ryoo HL, Gurevich E, Joyce JN (1994) Localization of dopamine D3 receptors to mesolimbic and D2 receptors to mesostriatal regions of human forebrain. Proc Natl Acad Sci USA 91:11271–11275

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Wilson AA, McCormick P, Kapur S, Willeit M, Garcia A, Hussey D, Houle S, Seeman P, Ginovart N (2005) Radiosynthesis and evaluation of [11C]-(+)-4-propyl-3,4,4a,5,6, 10b-hexahydro-2H-naphtho[1,2-b][1,4]oxazin-9 -ol as a potential radiotracer for in vivo imaging of the dopamine D2 high-affinity state with positron emission tomography. J Med Chem 48:4153

    Article  CAS  PubMed  Google Scholar 

  45. Seeman P, Ulpian C, Larsen RD, Anderson PS (1993) Dopamine receptors labelled by PHNO. Synapse 14:254–262

    Article  CAS  PubMed  Google Scholar 

  46. Willeit M, Ginovart N, Kapur S, Houle S, Hussey D, Seeman P, Wilson AA (2006) High-affinity states of human brain dopamine D2/3 receptors imaged by the agonist [11C]-(+)-PHNO. Biol Psychiatry 59:389–394

    Article  CAS  PubMed  Google Scholar 

  47. Graff-Guerrero A, Willeit M, Ginovart N, Mamo D, Mizrahi R, Rusjan P, Vitcu I, Seeman P, Wilson AA, Kapur S (2008) Brain region binding of the D(2/3) agonist [(11)C]-(+)-PHNO and the D(2/3) antagonist [(11)C]raclopride in healthy humans. Hum Brain Mapp 29:400–410

    Article  PubMed  Google Scholar 

  48. Rabiner EA, Slifstein M, Nobrega J, Plisson C, Huiban M, Raymond R, Diwan M, Wilson AA, McCormick P, Gentile G, Gunn RN, Laruelle MA (2009) In vivo quantification of regional dopamine-D3 receptor binding potential of (+)-PHNO: studies in non-human primates and transgenic mice. Synapse 63(9):782–793

    Article  CAS  PubMed  Google Scholar 

  49. Boileau I, Guttman M, Rusjan P, Adams JR, Houle S, Tong J, Hornykiewicz O, Furukawa Y, Wilson AA, Kapur S, Kish SJ (2009) Decreased binding of the D3 dopamine receptor-preferring ligand [11C]-(+)-PHNO in drug-naive Parkinson’s disease. Brain 132(Pt 5):1366–1375

    Article  PubMed  Google Scholar 

  50. Hattori N, Kitada T, Matsumine H, Asakawa S, Yamamura Y, Yoshino H, Kobayashi T, Yokochi M, Wang M, Yoritaka A, Kondo T, Kuzuhara S, Nakamura S, Shimizu N, Mizuno Y (1998) Molecular genetic analysis of a novel Parkin gene in Japanese families with autosomal recessive juvenile parkinsonism: evidence for variable homozygous deletions in the Parkin gene in affected individuals. Ann Neurol 44:935–941

    Article  CAS  PubMed  Google Scholar 

  51. Abbas N, Lücking CB, Ricard S, Dürr A, Bonifati V, De Michele G, Bouley S, Vaughan JR, Gasser T, Marconi R, Broussolle E, Brefel-Courbon C, Harhangi BS, Oostra BA, Fabrizio E, Böhme GA, Pradier L, Wood NW, Filla A, Meco G, Denefle P, Agid Y, Brice A (1999) A wide variety of mutations in the parkin gene are responsible for autosomal recessive parkinsonism in Europe. French Parkinson’s Disease Genetics Study Group and the European Consortium on Genetic Susceptibility in Parkinson’s disease. Hum Mol Genet 8(4):567–574

    Article  CAS  PubMed  Google Scholar 

  52. Shimura H, Hattori N, Si Kubo, Mizuno Y, Asakawa S, Minoshima S, Shimizu N, Iwai K, Chiba T, Tanaka K, Suzuki T (2000) Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nat Genet 25(3):302–305

    Article  CAS  PubMed  Google Scholar 

  53. Zimprich A, Biskup S, Leitner P, Lichner M, Farrer M, Lincoln S, Kachergus J, Hulihan M, Uitti R, Calne D (2004) Mutations in LRRK2 cause autosomal dominant parkinsonism with pleomorphic pathology. Neuron 44(4):601–607

    Article  CAS  PubMed  Google Scholar 

  54. Scherfler C, Khan NL, Pavese N, Eunson L, Graham E, Lees AJ, Quinn NP, Wood NW, Brooks DJ, Piccini P (2004) Striatal and cortical pre and postsynaptic dopaminergic dysfunction in sporadic parkin linked parkinsonism. Brain 127(6):1332–1342

    Article  PubMed  Google Scholar 

  55. Scherfler C, Khan NL, Pavese N, Lees AJ, Quinn NP, Brooks DJ, Piccini P (2006) Upregulation of dopamine D2 receptors in dopaminergic drug naïve patients with parkin gene mutations. Mov Disord 21(6):783–788

    Article  PubMed  Google Scholar 

  56. Endres CJ, Kolachana BS, Saunders RC, Su T, Weinberger D, Breier A, Eckelman WC, Carson RE (1997) Kinetic modeling of [11C]raclopride: combined PET-microdialysis studies. Cereb Blood Flow Metab 17(9):932–942

    Article  CAS  Google Scholar 

  57. Litvan I (1999) Recent advances in atypical parkinsonian disorders. Curr Opin Neurol 12(4):441–446

    Article  CAS  PubMed  Google Scholar 

  58. Schreckenberger M, Hägele S, Siessmeier T, Buchholz HG, Armbrust-Henrich H, Rösch F, Gründer G, Bartenstein P, Vogt T (2004) The dopamine D2 receptor ligand 18F-desmethoxyfallypride: an appropriate fluorinated PET tracer for the differential diagnosis of parkinsonism. Eur J Nucl Med Mol Imaging 31(8):1128–1135

    Article  CAS  PubMed  Google Scholar 

  59. la Fougère C, Pöpperl G, Levin J, Wängler B, Böning G, Uebleis C, Cumming P, Bartenstein P, Bötzel K, Tatsch K (2010) The value of the dopamine D2/3 receptor ligand 18F-desmethoxyfallypride for the differentiation of idiopathic and nonidiopathic parkinsonian syndromes. J Nucl Med 51(4):581–587

    Article  PubMed  Google Scholar 

  60. Hellwig S, Amtage F, Kreft A, Buchert R, Winz OH, Vach W, Spehl TS, Rijntjes M, Hellwig B, Weiller C, Winkler C, Weber WA, Tüscher O, Meyer PT (2012) [18F]FDG-PET is superior to [123I]IBZM-SPECT for the differential diagnosis of parkinsonism. Neurology 79(13):1314–1322

    Article  CAS  PubMed  Google Scholar 

  61. Politis M, Piccini P, Pavese N, Koh SB, Brooks DJ (2008) Evidence of dopamine dysfunction in the hypothalamus of patients with Parkinson’s disease: an in vivo 11C-raclopride PET study. Exp Neurol 214:112–116

    Article  CAS  PubMed  Google Scholar 

  62. Halldin C, Farde L, Högberg T, Mohell N, Hall H, Suhara T, Karlsson P, Nakashima Y, Swahn CG (1995) Carbon-11-FLB 457: a radioligand for extrastriatal D2 dopamine receptors. J Nucl Med 36(7):1275–1281

    CAS  PubMed  Google Scholar 

  63. Kaasinen V, Någren K, Hietala J, Oikonen V, Vilkman H, Farde L, Halldin C, Rinne JO (2000) Extrastriatal dopamine D2 and D3 receptors in early and advanced Parkinson’s disease. Neurology 54(7):1482–1487

    Article  CAS  PubMed  Google Scholar 

  64. Kaasinen V, Aalto S, Nagren K, Hietala J, Sonninen P, Rinne JO (2003) Extrastriatal dopamine D(2) receptors in Parkinson’s disease: a longitudinal study. J Neural Transm 110(6):591–601

    Article  CAS  PubMed  Google Scholar 

  65. Doudet DJ, Holden JE (2003) Raclopride studies of dopamine release: dependence on presynaptic integrity. Biol Psychiatry 54:1193–1199

    Article  CAS  PubMed  Google Scholar 

  66. Breier A, Su TP, Saunders R, Carson RE, Kolachana BS, de Bartolomeis A, Weinberger DR, Weisenfeld N, Malhotra AK, Eckelman WC, Pickar D (1997) Schizophrenia is associated with elevated amphetamine-induced synaptic dopamine concentrations: evidence from a novel positron emission tomography method. Proc Natl Acad Sci USA 94(6):2569–2574

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Goerendt IK, Messa C, Lawrence AD, Grasby PM, Piccini P, Brooks DJ (2003) Dopamine release during sequential finger movements in health and Parkinson’s disease: a PET study. Brain 126:312–325

    Article  PubMed  Google Scholar 

  68. Tedroff J, Pederson M, Aquilonius SM, Hartvig P, Jacobsson G, Langstrom B (1996) Levodopa induced changes in synaptic dopamine in patients with Parkinson’s disease as measured by 11C-raclopride displacement and PET. Neurology 46:1430–1436

    Article  CAS  PubMed  Google Scholar 

  69. Piccini P, Pavese N, Brooks DJ (2003) Endogenous dopamine release after pharmacological challenges in Parkinson’s disease. Ann Neurol 53:647–653

    Article  CAS  PubMed  Google Scholar 

  70. Koochesfahani KM, de la Fuerte-Fernandes R, Sossi V, Schulzer M, Lakshmi N, Yatham LN, Ruth TJ, Blinder S, Stoessl AJ (2006) Oral methylphenidate fails to elicit significant changes in extracellular putaminal dopamine levels in Parkinson’s disease patients: PET studies. Mov Disord 21(7):970–975

    Article  PubMed  Google Scholar 

  71. Sawamoto N, Piccini P, Hotten G, Pavese N, Thielemans K, Brooks DJ (2008) Cognitive deficits and striatal-frontal dopamine release in Parkinson’s disease. Brain 131:1294–1302

    Article  PubMed  Google Scholar 

  72. de la Fuente-Fernandez R, Lu JQ, Sossi V, Jivan S, Schulzer M, Holden JE, Lee CS, Ruth TJ, Calne DB, Stoessl AJ (2001) Biochemical variations in the synaptic levels of dopamine precede motor fluctuations in Parkinson’s disease: PET evidence of increased dopamine turnover. Ann Neurol 49:298–303

    Article  PubMed  Google Scholar 

  73. de la Fuente-Fernández R, Lim AS, Sossi V, Holden JE, Calne DB, Ruth TJ, Stoessl AJ (2001) Apomorphine-induced changes in synaptic dopamine levels: positron emission tomography evidence for presynaptic inhibition. J Cereb Blood Flow Metab 21:1151–1159

    Article  Google Scholar 

  74. de la Fuente-Fernandez R, Sossi V, Huang Z, Furtado S, Lu QR, Calne DB, Ruth TJ, Stoessl AJ (2004) Levodopa-induced changes in synaptic dopamine levels increase with progression of Parkinson’s disease: implications for dyskinesias. Brain 127:2747–2754

    Article  PubMed  Google Scholar 

  75. Pavese N, Evans AH, Tai YF, Hotton G, Brooks DJ, Lees AJ, Piccini P (2006) Clinical correlates of levodopa induced dopamine release in Parkinson’s disease: a PET study. Neurology 67:1612–1617

    Article  CAS  PubMed  Google Scholar 

  76. Piccini P, Brooks DJ, Bjorklund A, Gunn RN, Grasby PM, Rimoldi O, Brundin P, Hagell P, Rehncrona S, Widner H, Lindvall O (1999) Dopamine release from nigral transplants visualised in vivo in a Parkinson’s patient. Nat Neurosci 2(12):1047–1048

    Article  Google Scholar 

  77. Piccini P, Pavese N, Hagell P, Reiner J, Bjorklund A, Oertel WH, Quinn NP, Brooks DJ, Lindvall O (2005) Factors affecting the clinical outcome after neural transplantation in Parkinson’s disease. Brain 128(12):2977–2986

    Article  PubMed  Google Scholar 

  78. Politis M, Wu K, Loane C, Quinn NP, Brooks DJ, Rehncrona S, Bjorklund A, Lindvall O, Piccini P (2010) Serotonergic neurons mediate dyskinesia side effects in Parkinson’s patients with neural transplants. Sci Transl Med 2(38):38–46

    Article  Google Scholar 

  79. Politis M, Oertel WH, Wu K, Quinn NP, Pogarell O, Brooks DJ, Bjorklund A, Lindvall O, Piccini P (2011) Graft-induced dyskinesias in Parkinson’s disease: high striatal serotonin/dopamine transporter ratio. Mov Disord 26(11):1997–2003

    Article  PubMed  Google Scholar 

  80. Politis M, Wu K, Loane C, Quinn NP, Brooks DJ, Oertel WH, Björklund A, Lindvall O, Piccini P (2012) Serotonin neuron loss and nonmotor symptoms continue in Parkinson’s patients treated with dopamine grafts. Sci Transl Med 4(128):128–141

    Article  Google Scholar 

  81. Ma Y, Feigin A, Dhawan V, Fukuda M, Shi Q, Greene P, Breeze R, Fahn S, Freed C, Eidelberg D (2002) Dyskinesia after fetal cell transplantation for Parkinsonism: a PET study. Ann Neurol 52:628–634

    Article  PubMed  Google Scholar 

  82. Hagell P, Piccini P, Björklund A, Brundin P, Rehncrona S, Widner H, Crabb L, Pavese N, Oertel WH, Quinn N, Brooks DJ, Lindvall O (2002) Dyskinesias following neural transplantation in Parkinson’s disease. Nat Neurosci 5(7):627–628

    CAS  PubMed  Google Scholar 

  83. Molina JA, Sáinz-Artiga MJ, Fraile A, Jiménez-Jiménez FJ, Villanueva C, Ortí-Pareja M, Bermejo F (2000) Pathologic gambling in Parkinson’s disease: a behavioral manifestation of pharmacologic treatment? Mov Disord 15(5):869–872

    Article  CAS  PubMed  Google Scholar 

  84. Voon V, Reynolds B, Brezing C, Galleo C, Skaljic M, Ekanayake V, Fernandez H, Potenza MN, Dolan RJ, Hallett M (2010) Impulsive choice and response in dopamine agonist-related impulse control behaviours. Psychopharmacology 207(4):645–659

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  85. McElroy SL, Hudson JI, Pope HJ, Keck PE, Aizley HG (1992) The DSM-III-R impulse control disorders not elsewhere classified: clinical characteristics and relationships to other psychiatric disorders. Am J Psychiatry 149:318–327

    Article  CAS  PubMed  Google Scholar 

  86. Giovannoni G, O’Sullivan JD, Turner K, Manson AJ, Lees AJ (2000) Hedonistic homeostasis dysregulation in patients with Parkinson’s disease on dopamine replacement therapies. J Neurol Neurosurg Psychiatry 68:423–428

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  87. Evans AH, Pavese N, Lawrence AD, Tai FY, Appel S, Doder M, Brooks DJ, Lees AJ, Piccini P (2006) Compulsive drug use linked to sensitized ventral striatal dopamine transmission. Ann Neurol 59:852–858

    Article  CAS  PubMed  Google Scholar 

  88. Steeves TDL, Miyasaki J, Zurowski M, Lang AE, Pellecchia G, van Elmeren T, Rusjan P, Houle S, Strafella AP (2009) Increased striatal dopamine release in Parkinsonian patients with pathological gambling: a 11C-raclopride PET study. Brain 132:1376–1385

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  89. Callesen MB, Hansen KV, Gjedde A, Linnet J, Møller A (2013) Dopaminergic and clinical correlates of pathological gambling in Parkinson’s disease: a case report. Front Behav Neurosci 7:95

    Article  PubMed Central  PubMed  Google Scholar 

  90. O’Sullivan SS, Wu K, Politis M, Lawrence AD, Evans AH, Bose SK, Djamshidian A, Lees AJ, Piccini P (2011) Cue-induced striatal dopamine release in Parkinson’s disease-associated impulsive-compulsive behaviours. Brain 134(Pt 4):969–978

    Article  PubMed  Google Scholar 

  91. Politis M, Loane C, Wu K, O’Sullivan SS, Woodhead Z, Kiferle L, Lawrence AD, Lees AJ, Piccini P (2013) Neural response to visual sexual cues in dopamine treatment-linked hypersexuality in Parkinson’s disease. Brain 136(Pt 2):400–411

    Article  PubMed  Google Scholar 

  92. Ray NJ, Miyasaki JM, Zurowski M, Ko JH, Cho SS, Pellecchia G, Antonelli F, Houle S, Lang AE, Strafella AP (2012) Extrastriatal dopaminergic abnormalities of DA homeostasis in Parkinson’s patients with medication-induced pathological gambling: a [11C] FLB-457 and PET study. Neurobiol Dis 48(3):519–525

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  93. Howland RH (2008) Understanding the placebo effect. Part 2: underlying psychological and neurobiological processes. J Psychosoc Nurs Ment Health Serv 46(6):15–18

    Article  Google Scholar 

  94. de la Fuente-Fernandez R (2009) The placebo-reward hypothesis: dopamine and the placebo effect. Parkinsonism Relat Disord 15(3):72–74

    Article  Google Scholar 

  95. Wolf S (1959) The pharmacology of placebos. J Am Med Assoc 159:1602–1606

    Google Scholar 

  96. Shetty N, Friedman JH, Kieburtz K, Marshall FJ, Oakes D (1999) The placebo response in Parkinson’s disease. Parkinson Study Group. Clin Neuropharmacol 22(4):207–212

    CAS  PubMed  Google Scholar 

  97. de la Fuente-Fernandez R, Ruth TJ, Sossi V, Schulzer M, Calne DB, Stoessl AJ (2001) Expectation and dopamine release: mechanisms of the placebo effect in Parkinson’s disease. Science 293:1164–1166

    Article  PubMed  Google Scholar 

  98. de la Fuente-Fernández R, Phillips AG, Zamburlini M, Sossi V, Calne DB, Ruth TJ, Stoessl AJ (2002) Dopamine release in human ventral striatum and expectation of reward. Behav Brain Res 136(2):359–363

    Article  PubMed  Google Scholar 

  99. Lidstone SC, Schulzer M, Dinelle K, Mak E, Sossi V, Ruth TJ, de la Fuente-Fernández R, Phillips AG, Stoessl AJ (2010) Effects of expectation on placebo-induced dopamine release in Parkinson disease. Arch Gen Psychiatry 67(8):857–865

    Article  CAS  PubMed  Google Scholar 

  100. Fisher BE, Li Q, Nacca A, Salem GJ, Song J, Yip J, Hui JS, Jakowec MW, Petzinger GM (2013) Treadmill exercise elevates striatal dopamine D2 receptor binding potential in patients with early Parkinson’s disease. Neuroreport 24(10):509–514

    Article  CAS  PubMed  Google Scholar 

Download references

Conflicts of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marios Politis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niccolini, F., Su, P. & Politis, M. Dopamine receptor mapping with PET imaging in Parkinson’s disease. J Neurol 261, 2251–2263 (2014). https://doi.org/10.1007/s00415-014-7302-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-014-7302-2

Keywords

Navigation