Skip to main content

Advertisement

Log in

Cognitive correlates of cortical cholinergic denervation in Parkinson’s disease and parkinsonian dementia

  • ORIGINAL COMMUNICATION
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

We recently reported findings that loss of cortical acetylcholinesterase (AChE) activity is greater in parkinsonian dementia than in Alzheimer’s disease (AD). In this study we determined cognitive correlates of in vivo cortical AChE activity in patients with parkinsonian dementia (PDem, n = 11), Parkinson’s disease without dementia (PD, n = 13), and in normal controls (NC, n = 14) using N–[11C]methyl–piperidin–4–yl propionate ([11C]PMP) AChE positron emission tomography (PET). Cortical AChE activity was significantly reduced in the PDem (–20.9%) and PD (–12.7 %) subjects (P < 0.001) when compared with the control subjects. Analysis of the cognitive data within the patient groups demonstrated that scores on the WAIS-III Digit Span, a test of working memory and attention, had most robust correlation with cortical AChE activity (R = 0.61, p < 0.005). There were also significant correlations between cortical AChE activity and other tests of attentional and executive functions, such as the Trail Making and Stroop Color Word tests. There was no significant correlation between cortical AChE activity and duration of motor disease (R = –0.01, ns) or severity of parkinsonian motor symptoms (R = 0.14, ns). We conclude that cortical cholinergic denervation in PD and parkinsonian dementia is associated with decreased performance on tests of attentional and executive functioning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Aarsland D, Mosimann UP, McKeith IG (2004) Role of cholinesterase inhibitors in Parkinson’s disease and dementia with Lewy bodies. J Geriatr Psychiatry Neurol 17:164–171

    PubMed  Google Scholar 

  2. Arendt T, Bigl V, Arendt A, Tennstedt A (1983) Loss of neurons in the nucleus basalis of Meynert in Alzheimer’s disease, paralysis agitans and Korsakoff ’s Disease. Acta Neuropathol (Berl) 61:101–108

    Article  CAS  PubMed  Google Scholar 

  3. Bedard MA, Lemay S, Gagnon JF, Masson H, Paquet F (1998) Induction of a transient dysexecutive syndrome in Parkinson’s disease using a subclinical dose of scopolamine. Behav Neurol 11:187–195

    PubMed  Google Scholar 

  4. Bedard MA, Pillon B, Dubois B, Duchesne N, Masson H, Agid Y (1999) Acute and long-term administration of anticholinergics in Parkinson’s disease: specific effects on the subcorticofrontal syndrome. Brain Cogn 40:289–313

    CAS  PubMed  Google Scholar 

  5. Benton AL, Hamsher K (1976) Multilingual aphasia examination. AJA Associates, Iowa City

  6. Bohnen NI, Kaufer DI, Ivanco L, Lopresti B, Koeppe RA, Davis J, Mathis CA, Moore RY, DeKosky ST (2003) Cortical cholinergic function is more severely affected in Parkinsonian dementia than in Alzheimer’s Disease: an in vivo PET study. Arch Neurol 60:1745–1748

    Article  PubMed  Google Scholar 

  7. Bohnen NI, Kaufer DI, Hendrickson R, Ivanco LS, Lopresti B, Koeppe RA, Meltzer CC, Constantine G, Davis JG, Mathis CA, DeKosky ST, Moore RY (2005) Degree of inhibition of cortical acetylcholinesterase activity and cognitive effects by donepezil treatment in Alzheimer’s disease. J Neurol Neurosurg Psychiatry 76:315–319

    Article  CAS  PubMed  Google Scholar 

  8. Boller F, Mizutani T, Roessmann U, Gambetti P (1980) Parkinson’s disease, dementia and Alzheimer’s disease: clinicopathologic correlations. Ann Neurol 7:329–335

    Article  CAS  PubMed  Google Scholar 

  9. Candy JM, Perry RH, Perry EK, Irving D, Blessed G, Fairbairn AF, Tomlinson BE (1983) Pathological changes in the nucleus of Meynert in Alzheimer’s and Parkinson’s diseases. J Neurol Sci 59:277–289

    Article  CAS  PubMed  Google Scholar 

  10. Cooper JA, Sagar HJ, Doherty SM, Jordan N, Tidswell P, Sullivan EV (1992) Different effects of dopaminergic and anticholinergic therapies on cognitive and motor function in Parkinson’s disease. A follow-up study of untreated patients. Brain 115:1701–1725

    PubMed  Google Scholar 

  11. Delis DC, Kramer JH, Kaplan E, Ober BA (1987) California Verbal Learning Test: Adult Version. The Psychological Corporation, San Antonio, TX

    Google Scholar 

  12. DSM-IV (1994) Diagnostic and Statistical Manual of Mental Disorders. 4th ed., American Psychiatric Association, Washington, DC

  13. Dubois B, Pillon B, Lhermitte F, Agid Y (1990) Cholinergic deficiency and frontal dysfunction in Parkinson’s disease. Ann Neurol 28:117–121

    Article  CAS  PubMed  Google Scholar 

  14. Dubois B, Danze F, Pillon B, Cusimano G, Lhermitte F, Agid Y (1987) Cholinergic- dependent cognitive deficits in Parkinson’s disease. Ann Neurol 22:26–30

    Article  CAS  PubMed  Google Scholar 

  15. Fahn S, Elton R. Members of the UPDRS development committee (1987) Unified Parkinson’s disease rating scale. In: Fahn S, Marsden C, Calne D, Goldstein M (eds) Recent developments in Parkinson’s disease. Macmillan Healthcare Information, Florham Park, NJ, pp 153–164

  16. Folstein MF, Folstein SE, McHugh PR (1975) Mini-mental state: a practical method for grading the cognitive state of patients for the clinician. J Psychiatry Res 12:189–198

    CAS  Google Scholar 

  17. Gibb W (1989) Dementia and Parkinson’s disease. Br J Psychiatry 154:596–614

    CAS  PubMed  Google Scholar 

  18. Gotham AM, Brown RG, Marsden CD (1988) ‘Frontal’ cognitive function in patients with Parkinson’s disease ‘on’ and ‘off ’ levodopa. Brain 111:299–321

    PubMed  Google Scholar 

  19. Irie T, Fukushi K, Akimoto Y, Tamagami H, Nozaki T (1994) Design and evaluation of radioactive acetylcholine analogs for mapping brain acetylcholinesterase (AChE) in vivo. Nucl Med Biol 21:801–808

    CAS  PubMed  Google Scholar 

  20. Koeppe RA, Frey KA, Snyder SE, Meyer P, Kilbourn MR, Kuhl DE (1999) Kinetic modeling of N-[11C]methylpiperidin-4-yl propionate: alternatives for analysis of an irreversible positron emission tomography tracer for measurement of acetylcholinesterase activity in human brain. J Cereb Blood Flow Metab 19:1150–1163

    CAS  PubMed  Google Scholar 

  21. Korczyn AD (2001) Dementia in Parkinson’s disease. J Neurol 248(Suppl 3):III/1–III/4

    Google Scholar 

  22. Kuhl DE, Koeppe RA, Minoshima S, Snyder SE, Ficaro EP, Foster NL, Frey KA, Kilbourn MR (1999) In vivo mapping of cerebral acetylcholinesterase activity in aging and Alzheimer’s disease. Neurology 52:691–699

    CAS  PubMed  Google Scholar 

  23. Lees AJ, Smith E (1983) Cognitive deficits in the early stages of Parkinson’s disease. Brain 106:257–270

    PubMed  Google Scholar 

  24. Lezak M (1995) Neuropsychological Assessment. Oxford University Press, New York, NY

  25. Mahler ME, Cummings JL (1990) Alzheimer disease and the dementia of Parkinson disease: Comparative investigations. Alz Dis Ass Dis 4:133–149

    CAS  Google Scholar 

  26. Mattila PM, Roytta M, Lonnberg P, Marjamaki P, Helenius H, Rinne JO (2001) Choline acetyltransferase activity and striatal dopamine receptors in Parkinson’s disease in relation to cognitive impairment. Acta Neuropathol (Berl) 102:160–166

    CAS  PubMed  Google Scholar 

  27. McKeith IG, Perry EK, Perry RH (1999) Report of the second dementia with Lewy body international workshop. Diagnosis and treatment. Neurology 53:902–905

    CAS  PubMed  Google Scholar 

  28. Nakano I, Hirano A (1984) Parkinson’s disease: neuron loss in the nucleus basalis without concomitant Alzheimer’s disease. Ann Neurol 5:415–418

    Google Scholar 

  29. Namba H, Iyo M, Fukushi K, Shinotoh H, Nagatsuka S, Suhara T, Sudo Y, Suzuki K, Irie T (1999) Human cerebral acetylcholinesterase activity measured with positron emission tomography: procedure, normal values and effect of age. Eur J Nucl Med 26:135–143

    Article  CAS  PubMed  Google Scholar 

  30. Perry EK, Curtis M, Dick DJ, Candy JM, Atack JR, Bloxham CA, Blessed G, Fairbairn A, Tomlinson BE, Perry RH (1985) Cholinergic correlates of cognitive impairment in Parkinson’s disease: comparisons with Alzheimer’s disease. J Neurol Neurosurg Psychiatry 48:413–421

    CAS  PubMed  Google Scholar 

  31. Reitan R (1958) Validity of the Trailmaking Tests as an indication of organic brain damage. Mot Skills 8:271–276

    Google Scholar 

  32. Rogers JD, Brogan D, Mirra SS (1985) The nucleus basalis of Meynert in neurological disease: a quantitative morphological study. Ann Neurol 17:163–170

    Article  CAS  PubMed  Google Scholar 

  33. Ruberg M, Rieger F, Villageois A, Bonnet AM, Agid Y (1986) Acetylcholinesterase and butyrylcholinesterase in frontal cortex and cerebrospinal fluid of demented and non-demented patients with Parkinson’s disease. Brain Res 362:83–91

    Article  CAS  PubMed  Google Scholar 

  34. Snyder SE, Tluczek L, Jewett DM, Nguyen TB, Kuhl DE, Kilbourn MR (1998) Synthesis of 1-[11C]methylpiperidin- 4-yl propionate ([11C]PMP) for in vivo measurements of acetylcholinesterase activity. Nucl Med Biol 25:751–754

    CAS  PubMed  Google Scholar 

  35. Stern Y, Mayeux R, Rosen J, Ilson J (1983) Perceptual motor dysfunction in Parkinson’s disease: a deficit in sequential and predictive voluntary movement. J Neurol Neurosurg Psychiatry 46:145–151

    CAS  PubMed  Google Scholar 

  36. Tagliavini F, Pilleri G, Bouras C, Constantinidis J (1984) The basal nucleus of Meynert in idiopathic Parkinson’s disease. Acta Neurol Scand 70:20–28

    CAS  PubMed  Google Scholar 

  37. Talairach J, Tournoux P (1988) Coplanar stereotaxic atlas of the human brain. Thieme, New York

  38. Tanaka N, Fukushi K, Shinotoh H, Nagatsuka S, Namba H, Iyo M, Aotsuka A, Ota T, Tanada S, Irie T (2001) Positron emission tomographic measurement of brain acetylcholinesterase activity using N-[11C]methylpiperidin-4-yl acetate without arterial blood sampling: methodology of shape analysis and its diagnostic power for Alzheimer’s disease. J Cereb Blood Flow Metab 21:295–306

    CAS  PubMed  Google Scholar 

  39. Wechsler D (1997) Wechsler Adult Intelligence Scale-Third Edition. Psychological Corporation, San Antonio, TX

  40. Weinhard K (1998) Applications of 3D PET. In: Bendriem B, Townsend DW (eds) The theory and practice of 3D PET. Kluwer Academic Publishers, Boston, pp 133–167

  41. Whitehouse PJ, Hedreen JC, White CL, Price DL (1983) Basal forebrain neurons in the dementia of Parkinson disease. Ann Neurol 13:243–248

    Article  CAS  PubMed  Google Scholar 

  42. Wiseman MB, Nichols TE, Woods RP, Sweeney JA, Mintun MA (1996) Stereotaxic techniques comparing foci intensity and location of activation areas in the brain as obtained using positron emission tomography (PET). J Nucl Med 36(Suppl):93P

    Google Scholar 

  43. Woods RP, Mazziota JC, Cherry SR (1993) MRI-PET registration with automated algorithm. J Comput Assist Tomogr 17:536–546

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. I. Bohnen.

Additional information

Supported by grants from the Department of Veterans Affairs, National Institute of Aging (Alzheimer Disease Research Center, AG05133), and The Scaife Family Foundation, Pittsburgh, PA, USA.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bohnen, N.I., Kaufer, D.I., Hendrickson, R. et al. Cognitive correlates of cortical cholinergic denervation in Parkinson’s disease and parkinsonian dementia. J Neurol 253, 242–247 (2006). https://doi.org/10.1007/s00415-005-0971-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-005-0971-0

Key words

Navigation