Skip to main content
Log in

Recent reports on the effect of low doses of ionizing radiation and its dose–effect relationship

  • Controversial Issue
  • Published:
Radiation and Environmental Biophysics Aims and scope Submit manuscript

Abstract

Recently, the risk associated with low doses of ionizing radiation has gained new interest. Here, we analyze and discuss the major differences between two reports recently published on this issue; the report of the French Academy of Sciences and of the French Academy of Medicine published in March 2005, and the BEIR VII—Phase 2 Report of the American National Academy of Sciences published as a preliminary version in July 2005. The conclusion of the French Report is that the linear no-threshold relationship (LNT) may greatly overestimate the carcinogenic effect of low doses (<100 mSv) and even more that of very low doses (<10 mSv), such as those delivered during X-ray examinations. Conversely, the conclusion of the BEIR VII report is that LNT should be used for assessing the detrimental effects of these low and very low doses. The causes of these diverging conclusions should be carefully examined. They seem to be mostly associated with the interpretation of recent biological data. The point of view of the French Report is that these recent data are incompatible with the postulate on which LNT is implicitly based, namely the constancy of the carcinogenic effect per unit dose, irrespective of dose and dose rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Joint Report n° 2, Académie Nationale de Médecine, Institut de France—Académie des Sciences (March 30, 2005) Tubiana M, Aurengo A, Averbeck D, Bonnin A, Le Guen B, Masse R, Monier R, Valleron AJ, de Vathaire F. Dose–effect relationships and the estimation of the carcinogenic effects of low doses of ionizing radiation. (http://www.academiemedecine.fr/actualites/rapports.asp) Edition Nucleon (Paris 2005) ISBN 2-84332-018-6

  2. BEIR VII (National Research Council of the National Academies of USA). Health risk from exposure to low levels of ionizing radiation. Pre-publication version. July 2005

  3. Tubiana M (2005) Dose–effect relationship and estimation of the carcinogenic effects of low doses of ionizing radiation: The Joint Report of the Académie des Sciences (Paris) and of the Académie Nationale de Médecine. Int J Radiat Oncol Biol Phys 63:317–319

    Google Scholar 

  4. Brenner DJ, Doll R, Goodhead DT, Hall EJ, Land CE, Little JB, Lubin JH, Preston DL, Preston RJ, Puskin JS, Ron E, Sachs RK, Samet JM, Setlow RB, Zaider M (2003) Cancer risk attributable to low doses of ionizing radiation: assessing what we really know. Proc Natl Acad Sci USA 100:13761–13766

    Article  ADS  Google Scholar 

  5. Cardis E, Vrijheid M, Blettner M, Gilbert E, Hakama M, Hill C, Howe G, Kaldor J, Muirhead CR, Schubauer-Berigan M, Yoshimura T, Bermann F, Cowper G, Fix J, Hacker C, Heinmiller B, Marshall M, Thierry-Chef I, Utterback D, Ahn YO, Amoros E, Ashmore P, Auvinen A, Bae JM, Solano JB, Biau A, Combalot E, Deboodt P, Diez Sacristan A, Eklof M, Engels H, Engholm G, Gulis G, Habib R, Holan K, Hyvonen H, Kerekes A, Kurtinaitis J, Malker H, Martuzzi M, Mastauskas A, Monnet A, Moser M, Pearce MS, Richardson DB, Rodriguez-Artalejo F, Rogel A, Tardy H, Telle-Lamberton M, Turai I, Usel M, Veress K (2005) Risk of cancer after low doses of ionising radiation: retrospective cohort study in 15 countries. Brit Med J 331:77–83

    Article  Google Scholar 

  6. de Vathaire F (2005) Annexe 4: Les données épidémiologiques. In : Rapport conjoint n° 2 Académie Nationale de Médecine, Institut de France—Académie des Sciences (30 mars 2005) La relation dose–effet et l’estimation des effets cancérogènes des faibles doses de rayonnements ionisants (Edition Nucleon) pp 147–168

  7. Carnes BA, Groer PG, Kotec TJ (1997) Radium dial workers: issues concerning dose response and modeling. Radiat Res 147:707–714

    Article  Google Scholar 

  8. United Nations Scientific Committee on the effects of atomic radiation, sources and effects of ionizing radiation (1994) Publ E.94IX.11. United Nations, New York

  9. Van Kaick G, Wesch H, Luhrs H, Lieberman D, Kaul A (1991) Neoplastic diseases induced by chronic alpha irradiation. Epidemiological, biophysical and clinical results by the German Thoratrast study group. J Radiat Res 32(suppl 2):20–33

    Article  Google Scholar 

  10. Tubiana M. (2003) The carcinogenic effect of low doses: the validity of the linear no-threshold relationship. Int J Low Radiat 1:1–31

    Article  Google Scholar 

  11. Miller RC, Randers-Pehrson G, Geand CR, Hall E, Brenner DJ (1999) The oncogenic transforming potential of the passage of single α particles through mammalian cell nuclei. Proc Natl Acad Sci USA 96:19–22

    Article  ADS  Google Scholar 

  12. National Commission Radiological Protection (1990) The relative biological effectiveness of radiation of different quality. Report N° 104, Washington DC

  13. Masse R (1995) RBE for carcinogenesis following exposure to high LET radiation. Radiat Environ Biophys 34:223–227

    Article  Google Scholar 

  14. Tanooka H (2001) Threshold dose-response in radiation carcinogenesis: an approach from chronic beta-irradiation experiments and a review of non tumour doses. Int J Radiat Biol 77:541–551

    Article  Google Scholar 

  15. Duport P (2003) A database of cancer induction by low dose radiation in mammals: overview and initial observations. Int J Low Radiat 1:120–131

    Article  Google Scholar 

  16. Averbeck D, Testard I, Boucher D (2006) Changing views on ionizing radiation-induced cellular effects. Int J Low Radiation 3, n° 2

  17. Sancar A, Lindsey-Boltz LA, Ünsal-Kaçmaz K, Linn S (2004) Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu Rev Biochem 73:39–85

    Article  Google Scholar 

  18. Shiloh Y (2003) ATM and related protein kinases: safeguarding genome integrity. Nat Rev Cancer 3:155–168

    Article  Google Scholar 

  19. Collis SJ, Schwaninger JM, Ntambi AJ, Keller TW, Nelson WG, Dillehay LE, Deweese TL (2004) Evasion of early cellular response mechanisms following low level radiation induced DNA damage. J Biol Chem 279:49624–49632

    Article  Google Scholar 

  20. Dikomey E, Brammer I (2000) Relationship between cellular radiosensitivity and non-repaired double-strand breaks studied for different growth states, dose rates and plating conditions in a normal fibroblast line. Int J Radiat Biol 76:773–781

    Article  Google Scholar 

  21. Christmann M, Tomicic MT, Roos WP, Kaina B (2003) Mechanisms of human DNA repair: an update. Toxicology 193:3–34

    Article  Google Scholar 

  22. Hoeijmakers JH (2001) Genome maintenance mechanisms for preventing cancer. Nature 411:366–374

    Article  ADS  Google Scholar 

  23. Ma Y, Pannicke U, Schwarz K, Lieber MR (2002) Hairpin opening and overhang processing by an Artemis/DNA-dependent protein kinase complex in non homologous end-joining and V(D)J recombination. Cell 108:781–794

    Article  Google Scholar 

  24. Vilenchik MM., Knudson AG (2000) Inverse radiation dose-rate effects on somatic and germ-line mutations and DNA damage rates. Proc Natl Acad Sci USA 97:5381–5386

    Article  ADS  Google Scholar 

  25. Vilenchik MM, Knudson AG (2003) Endogenous DNA double-strand breaks: production, fidelity of repair, and induction of cancer. Proc Natl Acad Sci USA 100:12871–12876

    Article  ADS  Google Scholar 

  26. Chalmers A, Johnston P, Woodcock M, Joiner M, Marples B (2004) PARP-1, PARP-2, and the cellular response to low doses of ionizing radiation. Int J Radiat Oncol Biol Phys 58:410–419

    Google Scholar 

  27. Marples B, Wouters BG, Collis SJ, Chalmers AJ, Joiner MC (2004) Low-dose hyper-radiosensitivity: a consequence of ineffective cell cycle arrest of radiation-damaged G2-phase cells. Radiat Res 161:247–255

    Article  Google Scholar 

  28. Fernet M, Ponette V, Deniaud-Alexandre E, Menissier-De Murcia J, De Murcia G, Giocanti N, Megnin-Chanet F, Favaudon V (2000) Poly (ADP-Ribose) polymerase, a major determinant of early cell response X ionising radiation. Int J Radiat Oncol Biol Phys 76:73–84

    Google Scholar 

  29. Ponette V, Le Pechoux C, Deniaud-Alexandre E, Fernet M, Giocanti N, Tourbez H, Favaudon V (2000) Hyperfast early cell response to ionising radiation. Int J Radiat Oncol Biol 72:1233–1243

    Article  Google Scholar 

  30. Rigaud O, Moustacchi E (1996) Radioadaptation for gene mutation and the possible molecular mechanisms of the adaptive response. Mutat Res 358:127–134

    Google Scholar 

  31. Boreham DR, Dolling JA, Maves SR, Siwarungsun N, Mitchel RE (2000) Dose-rate effects for apoptosis and micronucleus formation in gamma-irradiated human lymphocytes. Radiat Res 153:579–586

    Article  Google Scholar 

  32. Guo M, Hay BA (1999) Cell proliferation and apoptosis. Curr Opin Cell Biol 11:745–752

    Article  Google Scholar 

  33. Mirzaie-Joniani H, Eriksson D, Sheikholvaezin A, Johansson A, Lofroth PO, Johansson L, Stigbrand T (2002) Apoptosis induced by low-dose and low-dose-rate radiation. Cancer 94:1210–1214

    Article  Google Scholar 

  34. Ohyama H, Yamada T (1998) Radiation-induced apoptosis: a review. In: Yamada T, Hasimoto Y (eds) Apoptosis, its roles and mechanisms. Business Center for Academic Societies Japan, Tokyo, pp 141–186

    Google Scholar 

  35. Rothkamm K, Löbrich M (2003) Evidence for a lack of DNA double-strand break repair in human cells exposed to very low X-ray doses. Proc Natl Acad Sci USA. 100:5057–50562

    Article  ADS  Google Scholar 

  36. Löbrich M, Rief N, Kuhne M, Fleckenstein J, Rube C, Uder M (2005) In vivo formation and repair of DNA double-strand breaks after computed tomography examinations. Proc Natl Acad Sci USA 102:8984–8989

    Article  ADS  Google Scholar 

  37. Bishay K, Ory K, Olivier MF, Lebeau J, Levalois C, Chevillard S (2001) DNA damage-related RNA expression to assess individual sensitivity to ionizing radiation. Carcinogenesis 22:1179–1183

    Article  Google Scholar 

  38. Amundson SA, Bittner M, Fornace AJ Jr (2003) Functional genomics as a window on radiation stress signalling. Oncogene 22:5828–5833

    Article  Google Scholar 

  39. Amundson SA, RA Lee, CA Koch-Paiz, ML Bittner, P Meltzer, JM Trent, AJ Fornace Jr (2003) Differential responses of stress genes to low dose-rate gamma irradiation. Mol Cancer Res 1:445–452

    Google Scholar 

  40. Amundson SA, Grace MB, McLeland CB, Epperly MW, Yeager A, Zhan Q, Greenberger JS, Fornace AJ Jr (2004) Human in vivo radiation-induced biomarkers: gene expression changes in radiotherapy patients. Cancer Res 64:6368–6371

    Article  Google Scholar 

  41. Amundson SA, Do KT, Vinikoor L, Koch-Paiz CA, Bittner ML, Trent JM, Meltzer P, Fornace AJ Jr (2005) Stress-specific signatures: expression profiling of p53 wild-type and -null human cells. Oncogene 24:4572–4579

    Article  Google Scholar 

  42. Mercier G, Berthault N, Mary J, Peyre J, Antoniadis A, Comet JP, Cornuejols A, Froidevaux C, Dutreix M (2004) Biological detection of low radiation doses by combining results of two microarray analysis methods. Nucleic Acids Res 32:12

    Article  Google Scholar 

  43. Brash DE (1997) Sunlight and the onset of skin cancer. Trends Genet 13:410–414

    Article  Google Scholar 

  44. Radisky DC, Bissell MJ (2004) Cancer. Respect thy neighbor! Science 303:774–775

    Article  Google Scholar 

  45. Bhowmick NA, Chytil A, Plieth D, Gorska AE, Dumont N, Shappell S, Washington MK, Neilson EG, Moses HL (2004) TGF-beta signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science 303:775–777

    Article  Google Scholar 

  46. Burns FJ, Albert RE (1986) Dose response for radiation induced cancer in rat skin. In: FJ Burns, Upton AC, Silini G (eds) Radiation carcinogenesis and DNA alterations. Life Sciences. Plenum Press, New York, pp 51–70

    Google Scholar 

  47. Euvrard S, Kanitakis J, Claudy A (2003) Skin cancers after organ transplantation. N Engl J Med 348:1681–1691

    Article  Google Scholar 

  48. Abelson PH (1994) Risk assessment of low level exposure. Science 265:1507

    Article  ADS  Google Scholar 

  49. Feinendegen LE and Neumann RD (2005) Physics must join with biology in better assessing risk from low dose irradiation. Radiation Protection Dosimetry (in press) [Oct 21 Epub ahead of print]

  50. ICRP Draft report of CommitteeI/Task group. Low dose extrapolation of radiation related cancer risk. Dec. 10, 2004

  51. Doll R, Wakeford R (1997) Risk of childhood cancer from fetal irradiation. Br J Radiol 70:130–139

    Google Scholar 

  52. Bithell JF (1993) Statistical issues in assessing the evidence associating obstetric irradiation and childhood malignancy. In: Lengfelder E, Wendhausen H (eds) Neue Bewertung des Strahlenriskos: Niedrigdosis Strahlung und Gesundheit, Munich, pp 53–60

  53. Monson RR, MacMahon B (1984) Prenatal X-ray exposure and cancer in children. In: Boice JD, Fraumeni JF (eds) Radiation carcinogenesis: epidemiology and biological significance. Raven Press, New York, pp 97–105

    Google Scholar 

  54. Delongchamp RR, Mabuchi K, Yoshimoto Y, Preston DL (1997) Cancer mortality among atomic bomb survivors exposed in utero or as young children. Radiat Res 147:385–395

    Article  Google Scholar 

  55. Naumburg E, Belloco R, Cnattingius S, Hall P, Boice J.D, Ekbom A (2001) Intrauterine exposure to diagnostic X rays and risk of childhood leukemia subtypes. Rad Res 156:718–723

    Article  Google Scholar 

  56. Shu XO, Potter JD, Linet MS, Severson RK, Han D, Kersey JH, Neglia JP, Trigg ME, Robison LL (2002) Diagnostic X-Rays and ultrasound exposure and risk of childhood acute lymphoblastic leukemia by immunophenotype. Cancer Epidemiol Biomarkers Prev 11:177–185

    Google Scholar 

  57. Monchaux G (2004) Risk of fatal versus incidental lung cancer in radon-exposed rats: a reanalysis of French data. Arch Oncol 12:7–12

    Article  Google Scholar 

  58. Rossi HH, Kellerer AM (1972) Radiation carcinogenesis at low doses. Science 175:200–202

    Article  ADS  Google Scholar 

  59. Rossi HH (1997) It is time for change. Health Phys Soc Newslett pp 8–9

  60. Rossi HH, Zaider M (1997) Radiogenic lung cancer. The effect of low doses of low LET radiation. Radiat Environ Biophys 36:85–88

    Article  Google Scholar 

  61. Boucher D, Hindo J, Averbeck D (2004) Increased repair of gamma-induced DNA double-strand breaks at lower dose-rate in CHO cells. Can J Physiol Pharmacol 82:125–132

    Article  Google Scholar 

  62. Ames BN, Gold LS (1997) Environmental pollution, pesticides and the prevention of cancer: misconceptions. FASEB J 11:1041–1052

    Google Scholar 

  63. WHO (1957) Questions de santé mentale, posées par l’utilisation de l’énergie nucléaire à des fins pacifiques. (Technical report no. 151) World Health Organization, Geneva

  64. Taylor LS (1980) Some non-scientific influences on radiation protection standards and practice. Health Phys 39:851–874

    Google Scholar 

  65. Pochin EE (1987) Radiation risks in perspective. Br J Radiol 60:42–50

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Tubiana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tubiana, M., Aurengo, A., Averbeck, D. et al. Recent reports on the effect of low doses of ionizing radiation and its dose–effect relationship. Radiat Environ Biophys 44, 245–251 (2006). https://doi.org/10.1007/s00411-006-0032-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00411-006-0032-9

Keywords

Navigation