Skip to main content

Advertisement

Log in

A visual [18F]FDG-PET rating scale for the differential diagnosis of frontotemporal lobar degeneration

  • Original Paper
  • Published:
European Archives of Psychiatry and Clinical Neuroscience Aims and scope Submit manuscript

Abstract

This study presents a visual rating scale for the assessment of cerebral [18F]fluoro-2-deoxy-d-glucose positron emission tomography (FDG-PET) scans to characterize typical findings in dementias associated with frontotemporal lobar degeneration (FTLD) and to differentiate individual patients with FTLD compared to Alzheimer’s disease (AD) and mild cognitive impairment (MCI). A total of 43 cerebral PET scans from patients with FTLD (n = 16, mean age 58.4 years), AD (n = 16, 59.9 years) and MCI (n = 11, 57.9 years) were analysed. Every PET data set was visually rated for seven brain regions on each hemisphere (frontal lobe, temporal lobe, parietal lobe, occipital lobe, basal ganglia, thalamus and cerebellum). The extent of the impairment in metabolism was classified as absent, mild, medium or strong. Using this four-stage visual rating scale, characteristic profiles of metabolic impairment in FTLD, AD, MCI and the FTLD-subgroup FTD (n = 9) could be demonstrated. Patients with FTLD showed a significantly lower metabolism in the left frontal lobe and in the left basal ganglia when compared to AD and to MCI. Complementary analyses using statistical parametric mapping (SPM2) supported the findings of the visual analysis. In detecting FTLD with visual rating, sensitivity/specificity was 81/94% compared to AD and 81/64% compared to MCI. Patients with FTD were correctly attributed to a diagnosis of FTLD with a sensitivity of 89%. This visual rating scale may facilitate the differential diagnosis of FTLD in clinical routine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bibl M, Mollenhauer B, Wolf S, Esselmann H, Lewczuk P, Kornhuber J, Wiltfang J (2007) Reduced CSF carboxyterminally truncated Abeta peptides in frontotemporal lobe degenerations. J Neural Transm 114:621–628

    Article  PubMed  CAS  Google Scholar 

  2. Broe M, Hodges JR, Schofield E, Shepherd CE, Kril JJ, Halliday GM (2003) Staging disease severity in pathologically confirmed cases of frontotemporal dementia. Neurology 60:1005–1011

    PubMed  CAS  Google Scholar 

  3. Burdette JH, Minoshima S, Vander Borght T, Tran DD, Kuhl DE (1996) Alzheimer disease: improved visual interpretation of PET images by using three-dimensional stereotaxic surface projections. Radiology 198:837–843

    PubMed  CAS  Google Scholar 

  4. Charpentier P, Lavenu I, Defebvre L, Duhamel A, Lecouffe P, Pasquier F, Steinling M (2000) Alzheimer’s disease and frontotemporal dementia are differentiated by discriminant analysis applied to (99m)Tc HmPAO SPECT data. J Neurol Neurosurg Psychiatry 69:661–663

    Article  PubMed  CAS  Google Scholar 

  5. Foster NL, Chase TN, Mansi L, Brooks R, Fedio P, Patronas NJ, Di Chiro G (1984) Cortical abnormalities in Alzheimer’s disease. Ann Neurol 16:649–654

    Article  PubMed  CAS  Google Scholar 

  6. Foster NL, Heidebrink JL, Clark CM, Jagust WJ, Arnold SE, Barbas NR, DeCarli CS, Turner RS, Koeppe RA, Higdon R, Minoshima S (2007) FDG-PET improves accuracy in distinguishing frontotemporal dementia and Alzheimer’s disease. Brain 130:2616–2635

    Article  PubMed  Google Scholar 

  7. Friston KJ, Frith CD, Liddle PF, Frackowiak RS (1991) Comparing functional (PET) images: the assessment of significant change. J Cereb Blood Flow Metab 11:690–699

    Article  PubMed  CAS  Google Scholar 

  8. Garraux G, Salmon E, Degueldre C, Lemaire C, Laureys S, Franck G (1999) Comparison of impaired subcortico-frontal metabolic networks in normal aging, subcortico-frontal dementia, and cortical frontal dementia. Neuroimage 10:149–162

    Article  PubMed  CAS  Google Scholar 

  9. Herholz K (2003) PET studies in dementia. Ann Nucl Med 17:79–89

    Article  PubMed  Google Scholar 

  10. Hindmarch I, Lehfeld H, de Jongh P, Erzigkeit H (1998) The bayer activities of daily living scale (B-ADL). Dement Geriatr Cogn Disord 9(Suppl 2):20–26

    Article  PubMed  Google Scholar 

  11. Ibach B, Koch H, Koller M, Wolfersdorf M, Workgroup for Geriatric Psychiatry of the Psychiatric State Hospitals of Germany, Workgroup for Clinical Research of the Psychiatric State Hospitals of Germany (2003) Hospital admission circumstances and prevalence of frontotemporal lobar degeneration: a multicenter psychiatric state hospital study in Germany. Dement Geriatr Cogn Disord 16:253–264

    Article  PubMed  CAS  Google Scholar 

  12. Ibach B, Poljansky S, Marienhagen J, Sommer M, Männer P, Hajak G (2004) Contrasting metabolic impairment in frontotemporal degeneration and early onset Alzheimer’s disease. Neuroimage 23:739–743

    Article  PubMed  CAS  Google Scholar 

  13. Ibach B, Binder H, Dragon M, Poljansky S, Haen E, Schmitz E, Koch H, Putzhammer A, Kluenemann H, Wieland W, Hajak G (2006) Cerebrospinal fluid tau and beta-amyloid in Alzheimer patients, disease controls and an age-matched random sample. Neurobiol Aging 27:1202–1211

    Article  PubMed  CAS  Google Scholar 

  14. Imabayashi E, Matsuda H, Asada T, Ohnishi T, Sakamoto S, Nakano S, Inoue T (2004) Superiority of 3-dimensional stereotactic surface projection analysis over visual inspection in discrimination of patients with very early Alzheimer’s disease from controls using brain perfusion SPECT. J Nucl Med 45:1450–1457

    PubMed  Google Scholar 

  15. Ishii K, Sakamoto S, Sasaki M, Kitagaki H, Yamaji S, Hashimoto M, Imamura T, Shimomura T, Hirono N, Mori E (1998) Cerebral glucose metabolism in patients with frontotemporal dementia. J Nucl Med 39:1875–1878

    PubMed  CAS  Google Scholar 

  16. Ishii K (2002) Clinical application of positron emission tomography for diagnosis of dementia. Ann Nucl Med 16:515–525

    Article  PubMed  Google Scholar 

  17. Jeong Y, Cho SS, Park JM, Kang SJ, Lee JS, Kang E, Na DL, Kim SE (2005) 18F-FDG PET findings in frontotemporal dementia: an SPM analysis of 29 patients. J Nucl Med 46:233–239

    PubMed  Google Scholar 

  18. Kertesz A, Davidson W, Fox H (1997) Frontal behavioral inventory: diagnostic criteria for frontal lobe dementia. Can J Neurol Sci 24:29–36

    PubMed  CAS  Google Scholar 

  19. Kertesz A, McMonagle P, Blair M, Davidson W, Munoz DG (2005) The evolution and pathology of frontotemporal dementia. Brain 128:1996–2005

    Article  PubMed  Google Scholar 

  20. Kitagaki H, Mori E, Yamaji S, Ishii K, Hirono N, Kobashi S, Hata Y (1998) Frontotemporal dementia and Alzheimer disease: evaluation of cortical atrophy with automated hemispheric surface display generated with MR images. Radiology 208:431–439

    PubMed  CAS  Google Scholar 

  21. Lewczuk P, Hornegger J, Zimmermann R, Otto M, Wiltfang J, Kornhuber J (2008) Neurochemical dementia diagnostics: assays in CSF and blood. Eur Arch Psychiatry Clin Neurosci 258(Suppl 5):44–49

    Article  PubMed  Google Scholar 

  22. McKeith IG, Galasko D, Kosaka K, Perry EK, Dickson DW, Hansen LA, Salmon DP, Lowe J, Mirra SS, Byrne EJ, Lennox G, Quinn NP, Edwardson JA, Ince PG, Bergeron C, Burns A, Miller BL, Lovestone S, Collerton D, Jansen EN, Ballard C, de Vos RA, Wilcock GK, Jellinger KA, Perry RH (1996) Consensus guidelines for the clinical and pathologic diagnosis of dementia with Lewy bodies (DLB): report of the consortium on DLB international workshop. Neurology 47:1113–1124

    PubMed  CAS  Google Scholar 

  23. McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM (1984) Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of department of health and human services task force on Alzheimer’s disease. Neurology 34:939–944

    PubMed  CAS  Google Scholar 

  24. Miller BL, Ikonte C, Ponton M, Levy M, Boone K, Darby A, Berman N, Mena I, Cummings JL (1997) A study of the Lund-Manchester research criteria for frontotemporal dementia: clinical and single-photon emission CT correlations. Neurology 48:937–942

    PubMed  CAS  Google Scholar 

  25. Mosconi L, Tsui WH, Herholz K, Pupi A, Drzezga A, Lucignani G, Reiman EM, Holthoff V, Kalbe E, Sorbi S, Diehl-Schmid J, Perneczky R, Clerici F, Caselli R, Beuthien-Baumann B, Kurz A, Minoshima S, de Leon MJ (2008) Multicenter standardized 18F-FDG PET diagnosis of mild cognitive impairment, Alzheimer’s disease, and other dementias. J Nucl Med 49:390–398

    Article  PubMed  Google Scholar 

  26. Morris JC, Heyman A, Mohs RC, Hughes JP, van Belle G, Fillenbaum G, Mellits ED, Clark C (1989) The consortium to establish a registry for Alzheimer’s disease (CERAD). Part I. clinical and neuropsychological assessment of Alzheimer’s disease. Neurology 39:1159–1165

    PubMed  CAS  Google Scholar 

  27. Neary D, Snowden JS, Gustafson L, Passant U, Stuss D, Black S, Freedman M, Kertesz A, Robert PH, Albert M, Boone K, Miller BL, Cummings J, Benson DF (1998) Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria. Neurology 51:1546–1554

    PubMed  CAS  Google Scholar 

  28. Nestor PJ, Graham NL, Fryer TD, Williams GB, Patterson K, Hodges JR (2003) Progressive non-fluent aphasia is associated with hypometabolism centred on the left anterior insula. Brain 126:2406–2418

    Article  PubMed  Google Scholar 

  29. Nestor PJ, Fryer TD, Hodges JR (2006) Declarative memory impairments in Alzheimer’s disease and semantic dementia. Neuroimage 30:1010–1020

    Article  PubMed  Google Scholar 

  30. Newberg A, Cotter A, Udeshi M, Alavi A, Clark C (2003) A metabolic imaging severity rating scale for the assessment of cognitive impairment. Clin Nucl Med 28:565–570

    Article  PubMed  Google Scholar 

  31. Newberg A, Cotter A, Udeshi M, Brinkman F, Glosser G, Alavi A, Clark C (2003) Brain metabolism in the cerebellum and visual cortex correlates with neuropsychological testing in patients with Alzheimer’s disease. Nucl Med Commun 24:785–790

    PubMed  CAS  Google Scholar 

  32. Palmer K, Fratiglioni L, Winblad B (2003) What is mild cognitive impairment? Variations in definitions and evolution of nondemented persons with cognitive impairment. Acta Neurol Scand Suppl 179:14–20

    Article  PubMed  Google Scholar 

  33. Patwardhan MB, McCrory DC, Matchar DB, Samsa GP, Rutschmann OT (2004) Alzheimer disease: operating characteristics of PET—a meta-analysis. Radiology 231:73–80

    Article  PubMed  Google Scholar 

  34. Perneczky R, Pohl C, Bornschein S, Förstl H, Kurz A, Diehl-Schmid J (2009) Accelerated clinical decline in well-educated patients with frontotemporal lobar degenerations. Eur Arch Psychiatry Clin Neurosci 259:362–367

    Article  PubMed  Google Scholar 

  35. Petersen RC, Doody R, Kurz A, Mohs RC, Morris JC, Rabins PV, Ritchie K, Rossor M, Thal L, Winblad B (2001) Current concepts in mild cognitive impairment. Arch Neurol 58:1985–1992

    Article  PubMed  CAS  Google Scholar 

  36. Petersen RC, Morris JC (2005) Mild cognitive impairment as a clinical entity and treatment target. Arch Neurol 62:1160–1163

    Article  PubMed  Google Scholar 

  37. Poljansky S, Ibach B, Vogel M, Männer P, Marienhagen J, Hajak G (2004) Unterschiede im zerebralen Glukosestoffwechsel zwischen frontotemporaler lobärer Degeneration und der Alzheimer-Krankheit. Psychiatr Prax 31(Suppl 1):73–75

    Article  Google Scholar 

  38. Riemenschneider M, Wagenpfeil S, Diehl J, Lautenschlager N, Theml T, Heldmann B, Drzezga A, Jahn T, Förstl H, Kurz A (2002) Tau and Abeta42 protein in CSF of patients with frontotemporal degeneration. Neurology 58:1622–1628

    PubMed  CAS  Google Scholar 

  39. Salmon E, Garraux G, Delbeuck X, Collette F, Kalbe E, Zuendorf G, Perani D, Fazio F, Herholz K (2003) Predominant ventromedial frontopolar metabolic impairment in frontotemporal dementia. Neuroimage 20:435–440

    Article  PubMed  Google Scholar 

  40. Salmon E, Kerrouche N, Herholz K, Perani D, Holthoff V, Beuthien-Baumann B, Degueldre C, Lemaire C, Luxen A, Baron JC, Collette F, Garraux G (2005) Decomposition of metabolic brain clusters in the frontal variant of frontotemporal dementia. Neuroimage 30:871–878

    Article  PubMed  Google Scholar 

  41. Shulman KI (2000) Clock-drawing: is it the ideal cognitive screening test? Int J Geriatr Psychiatry 15:548–561

    Article  PubMed  CAS  Google Scholar 

  42. Talairach J, Tournoux P (1988) Coplanar stereotaxic atlas of the human brain. 3-dimensional proportional system: an approach to cerebral imaging. Thieme, Stuttgart

    Google Scholar 

  43. Van Laere KJ, Warwick J, Versijpt J, Goethals I, Audenaert K, Van Heerden B, Dierckx R (2002) Analysis of clinical brain SPECT data based on anatomic standardization and reference to normal data: an ROC-based comparison of visual, semiquantitative, and voxel-based methods. J Nucl Med 43:458–469

    PubMed  Google Scholar 

  44. Varma AR, Adams W, Lloyd JJ, Carson KJ, Snowden JS, Testa HJ, Jackson A, Neary D (2002) Diagnostic patterns of regional atrophy on MRI and regional cerebral blood flow change on SPECT in young onset patients with Alzheimer’s disease, frontotemporal dementia and vascular dementia. Acta Neurol Scand 105:261–269

    Article  PubMed  CAS  Google Scholar 

  45. Varrone A, Pappata S, Caraco C, Soricelli A, Milan G, Quarantelli M, Alfano B, Postiglione A, Salvatore M (2002) Voxel-based comparison of rCBF SPET images in frontotemporal dementia and Alzheimer’s disease highlights the involvement of different cortical networks. Eur J Nucl Med Mol Imag 29:1447–1454

    Article  Google Scholar 

  46. Winblad B, Palmer K, Kivipelto M, Jelic V, Fratiglioni L, Wahlund LO, Nordberg A, Backman L, Albert M, Almkvist O, Arai H, Basun H, Blennow K, de Leon M, DeCarli C, Erkinjuntti T, Giacobini E, Graff C, Hardy J, Jack C, Jorm A, Ritchie K, van Duijn C, Visser P, Petersen RC (2004) Mild cognitive impairment–beyond controversies, towards a consensus: report of the international working group on mild cognitive impairment. J Intern Med 256:240–246

    Article  PubMed  CAS  Google Scholar 

  47. Yamada M, Ueda K, Namiki C, Hirao K, Hayashi T, Ohigashi Y, Murai T (2009) Social cognition in schizophrenia: similarities and differences of emotional perception from patients with focal frontal lesions. Eur Arch Psychiatry Clin Neurosci 259:227–233

    Article  PubMed  Google Scholar 

  48. Zahn R, Buechert M, Overmans J, Talazko J, Specht K, Ko CW, Thiel T, Kaufmann R, Dykierek P, Juengling F, Hüll M (2005) Mapping of temporal and parietal cortex in progressive nonfluent aphasia and Alzheimer’s disease using chemical shift imaging, voxel-based morphometry and positron emission tomography. Psychiatry Res 140:115–131

    Article  PubMed  Google Scholar 

  49. Zaudig M, Mittelhammer J, Hiller W, Pauls A, Thora C, Morinigo A, Mombour W (1991) SIDAM—a structured interview for the diagnosis of dementia of the Alzheimer type, multi-infarct dementia and dementias of other aetiology according to ICD-10 and DSM-III-R. Psychol Med 21:225–236

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Poljansky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poljansky, S., Ibach, B., Hirschberger, B. et al. A visual [18F]FDG-PET rating scale for the differential diagnosis of frontotemporal lobar degeneration. Eur Arch Psychiatry Clin Neurosci 261, 433–446 (2011). https://doi.org/10.1007/s00406-010-0184-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00406-010-0184-0

Keywords

Navigation