Skip to main content

Advertisement

Log in

[18F]Flutemetamol PET imaging and cortical biopsy histopathology for fibrillar amyloid β detection in living subjects with normal pressure hydrocephalus: pooled analysis of four studies

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Molecular imaging techniques developed to ‘visualize’ amyloid in vivo represent a major achievement in Alzheimer’s disease (AD) research. This pooled analysis of four studies determined the level of association between uptake of the fibrillar amyloid β positron emission tomography (PET) imaging agent [18F]flutemetamol (Pittsburgh Compound B analog with a 5.5 times longer half-life to enable it to be used in the clinical setting) and neuritic plaques and fibrillar amyloid β measured by pathologic staining of cortical region biopsy samples. Fifty-two patients with suspected normal pressure hydrocephalus underwent prospective (n = 30) or retrospective (n = 22) [18F]flutemetamol PET imaging for detection of cerebral cortical fibrillar amyloid β and cortical brain biopsy during intracranial pressure measurement or ventriculo-peritoneal shunting. [18F]Flutemetamol uptake was quantified using standardized uptake value ratio (SUVR) with cerebellar cortex as the reference region. Tissue fibrillar amyloid β was evaluated using immunohistochemical monoclonal antibody 4G8 and histochemical agents Thioflavin S and Bielschowsky silver stain, and an overall pathology result based on all available immunohistochemical and histochemical results. Biopsy site and contralateral [18F]flutemetamol SUVRs were significantly associated with neuritic plaque burden assessed with Bielschowsky silver stain (r spearman’s = 0.61, p = 0.0001 for both), as was the composite SUVR with biopsy pathology (r spearman’s = 0.74, p < 0.0001). SUVR and immunohistochemical results with 4G8 for detecting fibrillar amyloid β were similar. Blinded image evaluation showed strong agreement between readers (κ = 0.86). Overall sensitivity and specificity by majority read were 93 and 100 %. Noninvasive in vivo [18F]flutemetamol PET imaging demonstrates strong concordance with histopathology for brain fibrillar amyloid β, supporting its promise as a tool to assist physicians with earlier detection of the disease process and making diagnostic decisions about concomitant AD and other diseases associated with brain amyloidosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bacskai BJ, Frosch MP, Freeman SH et al (2007) Molecular imaging with Pittsburgh Compound B confirmed at autopsy: a case report. Arch Neurol 64:431–434

    Article  PubMed  Google Scholar 

  2. Bancroft JD, Gamble M (eds) (2007) Theory and practice of histological techniques, 6th edn. Churchill Livingstone, Elselvier

    Google Scholar 

  3. Braak H, Braak E (1997) Frequency of stages of Alzheimer-related lesions in different age categories. Neurobiol Aging 18:351–357

    Article  PubMed  CAS  Google Scholar 

  4. Buckley C, Ikonomovic M, Smith A, Heurling K, Farrar G, Brooks D, Grachev I, McLain R, Sherwin P et al (2012) Flutemetamol F 18 injection PET images reflect brain beta-amyloid levels. Alzheimer’s Dementia: J Alzheimer’s Assoc 8(Suppl):P90

    Article  Google Scholar 

  5. Cooper JH (1969) An evaluation of current methods for the diagnostic histochemistry of amyloid. J Clin Pathol 22:410–413

    Article  PubMed  CAS  Google Scholar 

  6. Cotran RS, Kumar V, Robbins SL (1989) Alzheimer’s Disease. In: Kumar V, Abbas AK, Aster J, Fausto N (eds) Robbins pathologic basis of disease. WB Saunders, Philadelphia, pp 1427–1429

    Google Scholar 

  7. Edison P, Archer HA, Hinz R et al (2007) Amyloid, hypometabolism, and cognition in Alzheimer disease: an [11C]PIB and [18F]FDG PET study. Neurology 68:501–508

    Article  PubMed  CAS  Google Scholar 

  8. Edison P, Hinz R, Brooks DJ. Technical aspects of amyloid imaging for Alzheimer’s disease (2011) Alzheimers Res Ther 3:25

  9. Engler H, Forsberg A, Almkvist O et al (2006) Two-year follow-up of amyloid deposition in patients with Alzheimer’s disease. Brain 129(Pt 11):2856–2866

    Article  PubMed  Google Scholar 

  10. Forsberg A, Engler H, Almkvist O et al (2008) PET imaging of amyloid deposition in patients with mild cognitive impairment. Neurobiol Aging 29:1456–1465

    Article  PubMed  CAS  Google Scholar 

  11. Golomb J, Wisoff J, Miller DC et al (2000) Alzheimer’s disease comorbidity in normal pressure hydrocephalus: prevalence and shunt response. J Neurol Neurosurg Psychiatry 68:778–781

    Article  PubMed  CAS  Google Scholar 

  12. Hamilton R, Patel S, Lee EB et al (2010) Lack of shunt response in suspected idiopathic normal pressure hydrocephalus with Alzheimer disease pathology. Ann Neurol 68:535–540

    Article  PubMed  Google Scholar 

  13. Harrison RS, Sharpe PC, Singh Y, Fairlie DP (2007) Amyloid peptides and proteins in review. Rev Physiol Biochem Pharmacol 159:1–77

    Article  PubMed  CAS  Google Scholar 

  14. Hyman BT, Trojanowski JQ (1997) Consensus recommendations for the postmortem diagnosis of Alzheimer disease from the National Institute on Aging and the Reagan Institute Working Group on diagnostic criteria for the neuropathological assessment of Alzheimer disease. J Neuropathol Exp Neurol 56:1095–1097

    Article  PubMed  CAS  Google Scholar 

  15. Ikonomovic M, Price J, Abrahamson E, Mathis C, Paljug W, Debnath M, Shao L, Becker C, Hamilton R, Klunk W (2012) Direct correlations of [H-3]flutemetamol binding with [H-3]PiB binding and amyloid-beta concentration and plaque load in [C-11]PiB imaged brains (S34.002). Neurology 78:S34.002

  16. Ikonomovic MD, Klunk WE, Abrahamson EE et al (2008) Post-mortem correlates of in vivo PIB-PET amyloid imaging in a typical case of Alzheimer’s disease. Brain 131:1630–1645

    Article  PubMed  Google Scholar 

  17. Jack CR Jr, Lowe VJ, Senjem ML et al (2008) 11C PiB and structural MRI provide complementary information in imaging of Alzheimer’s disease and amnestic mild cognitive impairment. Brain 131(pt 3):665–680

    Article  PubMed  Google Scholar 

  18. Jack CR Jr, Lowe VJ, Weigand SD et al (2009) Serial PIB and MRI in normal, mild cognitive impairment and Alzheimer’s disease: implications for sequence of pathological events in Alzheimer’s disease. Brain 132:355–365

    Article  Google Scholar 

  19. Jack CR Jr, Knopman DS, Jagust WJ et al (2010) Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurol 9:119–128

    Article  PubMed  CAS  Google Scholar 

  20. Klunk WE (2008) Biopsy support for the validity of Pittsburgh Compound B positron emission tomography with a twist. Arch Neurol 65:1281–1283

    Article  PubMed  Google Scholar 

  21. Klunk WE, Engler H, Nordberg A et al (2004) Imaging brain amyloid in Alzheimer’s disease with Pittsburgh Compound-B. Ann Neurol 55:306–319

    Article  PubMed  CAS  Google Scholar 

  22. Klunk WE, Mathis CA, Price JC, Lopresti BJ, DeKosky ST (2006) Two-year follow-up of amyloid deposition in patients with Alzheimer’s disease. Brain 129(Pt 11):2805–2807

    Article  PubMed  Google Scholar 

  23. Koivunen J, Pirttila T, Kemppainen N et al (2008) PET amyloid ligand [11C]PIB uptake and cerebrospinal fluid beta-amyloid in mild cognitive impairment. Dement Geriatr Cogn Disord 26:378–383

    Article  PubMed  CAS  Google Scholar 

  24. Koivunen J, Scheinin N, Virta JR et al (2011) Amyloid PET imaging in patients with mild cognitive impairment: a 2-year follow-up study. Neurology 76:1085–1090

    Article  PubMed  CAS  Google Scholar 

  25. Leinonen V, Alafuzoff I, Aalto S et al (2008) Assessment of β-amyloid in a frontal cortical brain biopsy specimen and by positron emission tomography by carbon-11 labelled Pittsburgh Compound B. Arch Neurol 65:1304–1309

    Article  PubMed  Google Scholar 

  26. Leinonen V, Koivisto AM, Savolainen S et al (2010) Amyloid and tau proteins in cortical brain biopsy and Alzheimer’s disease. Ann Neurol 68:446–453

    Article  PubMed  CAS  Google Scholar 

  27. Leinonen V, Koivisto AM, Savolainen S et al (2012) Post-mortem findings in 10 patients with presumed normal pressure hydrocephalus and review of the literature. Neuropathol Appl Neurobiol 38:72–86

    Article  PubMed  CAS  Google Scholar 

  28. Lin KJ, Hsu WC, Hsiao IT et al (2010) Whole-body biodistribution and brain PET imaging with [18F]AV-45, a novel amyloid imaging agent—a pilot study. Nucl Med Biol 37:497–508

    Article  PubMed  CAS  Google Scholar 

  29. Lopresti B, Klunk WE, Mathis CA et al (2005) Simplified quantification of Pittsburgh Compound B amyloid imaging PET studies: a comparative analysis. J Nucl Med 46:1959–1972

    PubMed  CAS  Google Scholar 

  30. Mirra SS, Heyman A, McKeel D (1991) The Consortium to Establish a Registry for Alzheimer’s Disease (CERAD). Part II. Standardization of the neuropathologic assessment of Alzheimer’s disease. Neurology 41:479–486

    Article  PubMed  CAS  Google Scholar 

  31. Montine TJ, Phelps CH, Beach TG et al (2012) National Institute on Aging-Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease: a practical approach. Acta Neuropathol 123:1–11

    Article  PubMed  CAS  Google Scholar 

  32. Nelissen N, Van Laere K, Thurfjell L et al (2009) Phase 1 study of the Pittsburgh Compound B derivative 18F-flutemetamol in healthy volunteers and patients with probable Alzheimer’s disease. J Nucl Med 50:1251–1259

    Article  PubMed  CAS  Google Scholar 

  33. Raji CA, Becker JT, Tsopelas ND et al (2008) Characterizing regional correlation, laterality and symmetry of amyloid deposition in mild cognitive impairment and Alzheimer’s disease with Pittsburgh Compound B. J Neurosci Methods 172:277–282

    Article  PubMed  CAS  Google Scholar 

  34. Rinne JO, Brooks DJ, Rossor MN et al (2010) 11C-PiB PET assessment of change in fibrillar amyloid-beta load in patients with Alzheimer’s disease treated with bapineuzumab: a phase 2, double-blind, placebo-controlled, ascending-dose study. Lancet Neurol 9:363–372

    Article  PubMed  CAS  Google Scholar 

  35. Rossetti HC, Munro CC, Hynan LS, Lacritz LH (2010) The CERAD neuropsychologic battery total score and the progression of Alzheimer disease. Alzheimer Dis Assoc Disord 24:138–142

    Article  PubMed  Google Scholar 

  36. Rowe CC, Ackerman U, Browne W et al (2008) Imaging of amyloid beta in Alzheimer’s disease with 18F-BAY94-9172, a novel PET tracer: proof of mechanism. Lancet Neurol 7:129–135

    Article  PubMed  CAS  Google Scholar 

  37. Rowe CC, Ellis KA, Rimajova M et al (2010) Amyloid imaging results from the Australian Imaging, Biomarkers and Lifestyle (AIBL) study of aging. Neurobiol Aging 31:1275–1283

    Article  PubMed  Google Scholar 

  38. Rowe CC, Ng S, Ackermann U et al (2007) Imaging beta-amyloid burden in aging and dementia. Neurology 68:1718–1725

    Article  PubMed  CAS  Google Scholar 

  39. Seppälä TT, Nerg O, Koivisto AM et al (2012) CSF biomarkers for Alzheimer disease correlate with cortical brain biopsy findings. Neurology. 78:1568–1575

    Article  PubMed  Google Scholar 

  40. Small GW, Kepe V, Ercoli LM et al (2006) PET of brain amyloid and tau in mild cognitive impairment. N Engl J Med 355:2652–2663

    Article  PubMed  CAS  Google Scholar 

  41. Spillantini MG, Goedert M, Jakes R, Klug A (1990) Different configurational states of beta-amyloid and their distributions relative to plaques and tangles in Alzheimer disease. Proc Natl Acad Sci USA 87:3947–3951

    Article  PubMed  CAS  Google Scholar 

  42. Storandt M, Mintun MA, Head D, Morris JC (2009) Cognitive decline and brain volume loss as signatures of cerebral amyloid-beta peptide deposition identified with Pittsburgh Compound B: cognitive decline associated with Abeta deposition. Arch Neurol 66:1476–1481

    Article  PubMed  Google Scholar 

  43. Thal DR, Rub U, Orantes M et al (2002) Phases of A beta-deposition in the human brain and its relevance for the development of AD. Neurology 58:1791–1800

    Article  PubMed  Google Scholar 

  44. Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, Mazoyer B, Joliot M (2002) Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage 15:273–289

    Article  PubMed  CAS  Google Scholar 

  45. Vallet PG, Guntern R, Hof PR et al (1992) A comparative study of histological and immunohistochemical methods for neurofibrillary tangles and senile plaques in Alzheimer’s disease. Acta Neuropathol 83:170–178

    Article  PubMed  CAS  Google Scholar 

  46. Vandenberghe R, Van Laere K, Ivanoiu A et al (2010) 18Fflutemetamol amyloid imaging in Alzheimer disease and mild cognitive impairment: a phase 2 trial. Ann Neurol 68:319–329

    Article  PubMed  Google Scholar 

  47. Verhoeff NP, Wilson AA, Takeshita S et al (2004) In vivo imaging of Alzheimer disease beta-amyloid with [11C]SB-13 PET. Am J Geriatr Psychiatry 12:584–595

    PubMed  Google Scholar 

  48. Wolk DA, Grachev ID, Buckley C et al (2011) Association between in vivo fluorine 18-labeled flutemetamol amyloid positron emission tomography imaging and in vivo cerebral cortical histopathology. Arch Neurol 68:1398–1403

    Article  PubMed  Google Scholar 

  49. Wolk DA, Klunk W (2009) Update on amyloid imaging: from healthy aging to Alzheimer’s disease. Curr Neurol Neurosci Rep 9:345–352

    Article  PubMed  Google Scholar 

  50. Wolk DA, Price JC, Saxton JA et al (2009) Amyloid imaging in mild cognitive impairment subtypes. Ann Neurol 65:557–568

    Article  PubMed  Google Scholar 

  51. Wolk D, Rinne J, Wong D, Leinonen V, Arnold S, Buckley C, Smith A, McLain R, Sherwin P, Farrar G, Kailajarvi M, Grachev I (2012) [18F]-Flutemetamol PET amyloid imaging and cortical biopsy histopathology in normal pressure hydrocephalus: pooled analysis of four studies (S34.001) Neurology 78:S34.001

  52. Wong DF, Moghekar AR, Rigamonti D, Brašić JR, Rousset O, Willis W, Buckley C, Smith A, Gok B, Sherwin P, Grachev ID (2012) An in vivo evaluation of cerebral cortical amyloid with [(18)F]flutemetamol using positron emission tomography compared with parietal biopsy samples in living normal pressure hydrocephalus patients. Mole Imaging Biol Aug 10 [epub ahead of print]

  53. Wu C, Pike VW, Wang Y (2005) Amyloid imaging: from benchtop to bedside. Curr Top Dev Biol 70:171–213

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank all the patients and their relatives for participation in the study. The referring physicians and the staff of University of Pennsylvania, Johns Hopkins Medical Institution, and Turku PET Centers are gratefully acknowledged for excellent collaboration. We acknowledge the staff of the i3 Statprobe, USA, for biometric services, programming, and statistical analyses, and SJ Berman Services, LLC for editorial assistance (both organizations were funded by GE Healthcare). We are grateful to Kerstin Heurling (GE Healthcare) for technical support with VOI placement for the imaging data analysis and illustrations. The authors wish to thank all involved GE Healthcare study team members for operational support, and data, programming, and statistical management. The study was entirely funded by GE Healthcare.

Conflict of interest

Chris Buckley, Adrian Smith, Paul Sherwin, Gill Farrar, Marita Kailajärvi and Igor D Grachev are employees of GE Healthcare. Richard McLain is a contract-consultant of GE Healthcare. There are no other potential competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor D. Grachev.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 285 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rinne, J.O., Wong, D.F., Wolk, D.A. et al. [18F]Flutemetamol PET imaging and cortical biopsy histopathology for fibrillar amyloid β detection in living subjects with normal pressure hydrocephalus: pooled analysis of four studies. Acta Neuropathol 124, 833–845 (2012). https://doi.org/10.1007/s00401-012-1051-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-012-1051-z

Keywords

Navigation