Skip to main content
Log in

MR-optical imaging of cardiovascular molecular targets

  • REVIEW
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Our understanding of the intricate inflammation biology underlying atherosclerosis is rapidly progressing. Molecular imaging strategies, harnessing this body of knowledge, have been developed to visualize some key cellular and molecular events in plaque evolution and vulnerability. Here, we discuss recent advances in magnetic resonance and fluorescence imaging of key biomarkers including adhesion molecules, inflammatory cells, and enzyme activity. We discuss strengths and limitations of respective imaging technologies, and comment on the potential of multi-modality imaging approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Aikawa E, Nahrendorf M, Sosnovik D, Lok VM, Jaffer FA, Aikawa M, Weissleder R (2007) Multimodality molecular imaging identifies proteolytic and osteogenic activities in early aortic valve disease. Circulation 115:377–386

    Article  PubMed  CAS  Google Scholar 

  2. Amirbekian V, Lipinski MJ, Briley-Saebo KC, Amirbekian S, Aguinaldo JG, Weinreb DB, Vucic E, Frias JC, Hyafil F, Mani V, Fisher EA, Fayad ZA (2007) Detecting and assessing macrophages in vivo to evaluate atherosclerosis noninvasively using molecular MRI. Proc Natl Acad Sci USA 104:961–966

    Article  PubMed  CAS  Google Scholar 

  3. Barkhausen J, Ebert W, Heyer C, Debatin JF, Weinmann HJ (2003) Detection of atherosclerotic plaque with Gadofluorine-enhanced magnetic resonance imaging. Circulation 108:605–609

    Article  PubMed  CAS  Google Scholar 

  4. Brennan ML, Penn MS, Van Lente F, Nambi V, Shishehbor MH, Aviles RJ, Goormastic M, Pepoy ML, McErlean ES, Topol EJ, Nissen SE, Hazen SL (2003) Prognostic value of myeloperoxidase in patients with chest pain. N Engl J Med 349:1595–1604

    Article  PubMed  CAS  Google Scholar 

  5. Chen J, Tung CH, Mahmood U, Ntziachristos V, Gyurko R, Fishman MC, Huang PL, Weissleder R (2002) In vivo imaging of proteolytic activity in atherosclerosis. Circulation 105:2766–2771

    Article  PubMed  Google Scholar 

  6. Chen JW, Querol Sans M, Bogdanov A Jr., Weissleder R (2006) Imaging of myeloperoxidase in mice by using novel amplifiable paramagnetic substrates. Radiology 240:473–481

    Article  PubMed  Google Scholar 

  7. Cybulsky MI, Gimbrone MA Jr. (1991) Endothelial expression of a mononuclear leukocyte adhesion molecule during atherogenesis. Science 251:788–791

    Article  PubMed  CAS  Google Scholar 

  8. Deguchi JO, Aikawa M, Tung CH, Aikawa E, Kim DE, Ntziachristos V, Weissleder R, Libby P (2006) Inflammation in atherosclerosis: visualizing matrix metalloproteinase action in macrophages in vivo. Circulation 114:55–62

    Article  PubMed  Google Scholar 

  9. Falk E, Shah PK, Fuster V (1995) Coronary plaque disruption. Circulation 92:657–671

    PubMed  CAS  Google Scholar 

  10. Frias JC, Williams KJ, Fisher EA, Fayad ZA (2004) Recombinant HDL-like nanoparticles: a specific contrast agent for MRI of atherosclerotic plaques. J Am Chem Soc 126:16316–16317

    Article  PubMed  CAS  Google Scholar 

  11. Funovics M, Montet X, Reynolds F, Weissleder R, Josephson L (2005) Nanoparticles for the optical imaging of tumor E-selectin. Neoplasia 7:904–911

    Article  PubMed  CAS  Google Scholar 

  12. Galande AK, Hilderbrand SA, Weissleder R, Tung CH (2006) Enzyme-targeted fluorescent imaging probes on a multiple antigenic peptide core. J Med Chem 49:4715–4720

    Article  PubMed  CAS  Google Scholar 

  13. Jaffer FA, Kim DE, Quinti L, Tung CH, Aikawa E, Pande AN, Kohler RH, Shi GP, Libby P, Weissleder R (2007) Optical visualization of cathepsin K activity in atherosclerosis with a novel, protease-activatable fluorescence sensor. Circulation 115:2292–2298

    Article  PubMed  Google Scholar 

  14. Jaffer FA, Libby P, Weissleder R (2006) Molecular and cellular imaging of atherosclerosis: emerging applications. J Am Coll Cardiol 47:1328–1338

    Article  PubMed  CAS  Google Scholar 

  15. Jaffer FA, Nahrendorf M, Sosnovik D, Kelly KA, Aikawa E, Weissleder R (2006) Cellular imaging of inflammation in atherosclerosis using magnetofluorescent nanomaterials. Mol Imaging 5:85–92

    PubMed  Google Scholar 

  16. Jaffer FA, Weissleder R (2005) Molecular imaging in the clinical arena. JAMA 293:855–862

    Article  PubMed  CAS  Google Scholar 

  17. Kelly KA, Allport JR, Tsourkas A, Shinde-Patil VR, Josephson L, Weissleder R (2005) Detection of vascular adhesion molecule-1 expression using a novel multimodal nanoparticle. Circ Res 96:327–336

    Article  PubMed  CAS  Google Scholar 

  18. Kooi ME, Cappendijk VC, Cleutjens KB, Kessels AG, Kitslaar PJ, Borgers M, Frederik PM, Daemen MJ, van Engelshoven JM (2003) Accumulation of ultrasmall superparamagnetic particles of iron oxide in human atherosclerotic plaques can be detected by in vivo magnetic resonance imaging. Circulation 107:2453–2458

    Article  PubMed  CAS  Google Scholar 

  19. Libby P (2002) Inflammation in atherosclerosis. Nature 420:868–874

    Article  PubMed  CAS  Google Scholar 

  20. Lipinski MJ, Amirbekian V, Frias JC, Aguinaldo JG, Mani V, Briley-Saebo KC, Fuster V, Fallon JT, Fisher EA, Fayad ZA (2006) MRI to detect atherosclerosis with gadolinium-containing immunomicelles targeting the macrophage scavenger receptor. Magn Reson Med 56:601–610

    Article  PubMed  Google Scholar 

  21. Litovsky S, Madjid M, Zarrabi A, Casscells SW, Willerson JT, Naghavi M (2003) Superparamagnetic iron oxide-based method for quantifying recruitment of monocytes to mouse atherosclerotic lesions in vivo: enhancement by tissue necrosis factor-alpha, interleukin-1beta, and interferon-gamma. Circulation 107:1545–1549

    Article  PubMed  Google Scholar 

  22. Naghavi M, Libby P, Falk E, Casscells SW, Litovsky S, Rumberger J, Badimon JJ, Stefanadis C, Moreno P, Pasterkamp G, Fayad Z, Stone PH, Waxman S, Raggi P, Madjid M, Zarrabi A, Burke A, Yuan C, Fitzgerald PJ, Siscovick DS, de Korte CL, Aikawa M, Airaksinen KE, Assmann G, Becker CR, Chesebro JH, Farb A, Galis ZS, Jackson C, Jang IK, Koenig W, Lodder RA, March K, Demirovic J, Navab M, Priori SG, Rekhter MD, Bahr R, Grundy SM, Mehran R, Colombo A, Boerwinkle E, Ballantyne C, Insull W Jr., Schwartz RS, Vogel R, Serruys PW, Hansson GK, Faxon DP, Kaul S, Drexler H, Greenland P, Muller JE, Virmani R, Ridker PM, Zipes DP, Shah PK, Willerson JT (2003) From vulnerable plaque to vulnerable patient: a call for new definitions, risk assessment strategies: part II. Circulation 108:1772–1778

    Article  PubMed  Google Scholar 

  23. Nahrendorf M, Jaffer FA, Kelly KA, Sosnovik DE, Aikawa E, Libby P, Weissleder R (2006) Noninvasive vascular cell adhesion molecule-1 imaging identifies inflammatory activation of cells in atherosclerosis. Circulation 114:1504–1511

    Article  PubMed  CAS  Google Scholar 

  24. Nahrendorf M, Sosnovik DE, Waterman P, Swirski FK, Pande AN, Aikawa E, Figueiredo JL, Pittet MJ, Weissleder R (2007) Dual channel optical tomographic imaging of leukocyte recruitment and protease activity in the healing myocardial infarct. Circ Res 100:1218–1225

    Article  PubMed  CAS  Google Scholar 

  25. Ntziachristos V, Tung CH, Bremer C, Weissleder R (2002) Fluorescence molecular tomography resolves protease activity in vivo. Nat Med 8:757–760

    Article  PubMed  CAS  Google Scholar 

  26. O’Brien KD, Allen MD, McDonald TO, Chait A, Harlan JM, Fishbein D, McCarty J, Ferguson M, Hudkins K, Benjamin CD et al (1993) Vascular cell adhesion molecule-1 is expressed in human coronary atherosclerotic plaques. Implications for the mode of progression of advanced coronary atherosclerosis. J Clin Invest 92:945–951

    Article  PubMed  CAS  Google Scholar 

  27. Pande AN, Kohler RH, Aikawa E, Weissleder R, Jaffer FA (2006) Detection of macrophage activity in atherosclerosis in vivo using multichannel, high-resolution laser scanning fluorescence microscopy. J Biomed Opt 11:021009

    Article  PubMed  Google Scholar 

  28. Perez JM, Simeone J, Tsourkas A, Josephson L, Weissleder R (2003) Peroxidase substrate nanosensors for MR imaging. Nano Lett 4:119–122

    Article  Google Scholar 

  29. Reynolds PR, Larkman DJ, Haskard DO, Hajnal JV, Kennea NL, George AJ, Edwards AD (2006) Detection of vascular expression of E-selectin in vivo with MR imaging. Radiology 241:469–476

    Article  PubMed  Google Scholar 

  30. Ronald J, Chen JW, Rogers K, Querol M, Bogdanov A, Rutt B, Weissleder R (2006) Molecular imaging of myeloperoxidase activity in rabbit atherosclerotic plaques. Abstract, Society of Molecular Imaging, Big Island, HI

  31. Ruehm SG, Corot C, Vogt P, Kolb S, Debatin JF (2001) Magnetic resonance imaging of atherosclerotic plaque with ultrasmall superparamagnetic particles of iron oxide in hyperlipidemic rabbits. Circulation 103:415–422

    PubMed  CAS  Google Scholar 

  32. Schmitz SA, Coupland SE, Gust R, Winterhalter S, Wagner S, Kresse M, Semmler W, Wolf KJ (2000) Superparamagnetic iron oxide-enhanced MRI of atherosclerotic plaques in Watanabe hereditable hyperlipidemic rabbits. Invest Radiol 35:460–471

    Article  PubMed  CAS  Google Scholar 

  33. Sirol M, Itskovich VV, Mani V, Aguinaldo JG, Fallon JT, Misselwitz B, Weinmann HJ, Fuster V, Toussaint JF, Fayad ZA (2004) Lipid-rich atherosclerotic plaques detected by gadofluorine-enhanced in vivo magnetic resonance imaging. Circulation 109:2890–2896

    Article  PubMed  CAS  Google Scholar 

  34. Sosnovik DE, Nahrendorf M, Deliolanis N, Novikov M, Aikawa E, Josephson L, Rosenzweig A, Weissleder R, Ntziachristos V (2007) Fluorescence tomography and magnetic resonance imaging of myocardial macrophage infiltration in infarcted myocardium in vivo. Circulation 115:1384–1391

    Article  PubMed  Google Scholar 

  35. Sosnovik DE, Nahrendorf M, Weissleder R (2007) Molecular magnetic resonance imaging in cardiovascular medicine. Circulation 115:2076–2086

    Article  PubMed  Google Scholar 

  36. Sosnovik DE, Schellenberger EA, Nahrendorf M, Novikov MS, Matsui T, Dai G, Reynolds F, Grazette L, Rosenzweig A, Weissleder R, Josephson L (2005) Magnetic resonance imaging of cardiomyocyte apoptosis with a novel magneto-optical nanoparticle. Magn Reson Med 54:718–724

    Article  PubMed  Google Scholar 

  37. Toussaint JF, LaMuraglia GM, Southern JF, Fuster V, Kantor HL (1996) Magnetic resonance images lipid, fibrous, calcified, hemorrhagic, and thrombotic components of human atherosclerosis in vivo. Circulation 94:932–938

    PubMed  CAS  Google Scholar 

  38. Trivedi RA, JM UK-I, Graves MJ, Cross JJ, Horsley J, Goddard MJ, Skepper JN, Quartey G, Warburton E, Joubert I, Wang L, Kirkpatrick PJ, Brown J, Gillard JH (2004) In vivo detection of macrophages in human carotid atheroma: temporal dependence of ultrasmall superparamagnetic particles of iron oxide-enhanced MRI. Stroke 35:1631–1635

  39. Tsourkas A, Shinde-Patil VR, Kelly KA, Patel P, Wolley A, Allport JR, Weissleder R (2005) In vivo imaging of activated endothelium using an anti-VCAM-1 magnetooptical probe. Bioconjug Chem 16:576–581

    Article  PubMed  CAS  Google Scholar 

  40. Weissleder R (2006) Molecular imaging in cancer. Science 312:1168–1171

    Article  PubMed  CAS  Google Scholar 

  41. Weissleder R, Ntziachristos V (2003) Shedding light onto live molecular targets. Nat Med 9:123–128

    Article  PubMed  CAS  Google Scholar 

  42. Weissleder R, Tung CH, Mahmood U, Bogdanov A Jr (1999) In vivo imaging of tumors with protease-activated near-infrared fluorescent probes. Nat Biotechnol 17:375–378

    Article  PubMed  CAS  Google Scholar 

  43. Winter PM, Morawski AM, Caruthers SD, Fuhrhop RW, Zhang H, Williams TA, Allen JS, Lacy EK, Robertson JD, Lanza GM, Wickline SA (2003) Molecular imaging of angiogenesis in early-stage atherosclerosis with alpha(v)beta3integrin-targeted nanoparticles. Circulation 108:2270–2274

    Article  PubMed  CAS  Google Scholar 

  44. Winter PM, Neubauer AM, Caruthers SD, Harris TD, Robertson JD, Williams TA, Schmieder AH, Hu G, Allen JS, Lacy EK, Zhang H, Wickline SA, Lanza GM (2006) Endothelial alpha(v)beta3 integrin-targeted fumagillin nanoparticles inhibit angiogenesis in atherosclerosis. Arterioscler Thromb Vasc Biol 26:2103–2109

    Article  PubMed  CAS  Google Scholar 

  45. Yuan C, Mitsumori LM, Ferguson MS, Polissar NL, Echelard D, Ortiz G, Small R, Davies JW, Kerwin WS, Hatsukami TS (2001) In vivo accuracy of multispectral magnetic resonance imaging for identifying lipid-rich necrotic cores and intraplaque hemorrhage in advanced human carotid plaques. Circulation 104:2051–2056

    Article  PubMed  CAS  Google Scholar 

  46. Zhu B, Jaffer FA, Ntziachristos V, Weissleder R (2005) Development of a near infrared fluorescence catheter: operating characteristics and feasibility for atherosclerotic plaque detection. J Phys D Appl Phys 2701–2707

Download references

Conflict of Interest

Dr Weissleder is a shareholder of VisEn Medical in Woburn (MA), USA. The other authors report no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Nahrendorf MD.

Additional information

Support sources

RO1-HL078641 (R.W.), UO1-HL080731 (R.W.), D.W. Reynolds foundation (R.W.), K08 HL079984 (D.S.).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nahrendorf, M., Sosnovik, D.E. & Weissleder, R. MR-optical imaging of cardiovascular molecular targets. Basic Res Cardiol 103, 87–94 (2008). https://doi.org/10.1007/s00395-008-0707-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00395-008-0707-2

Key words

Navigation