Skip to main content

Advertisement

Log in

Functional neuroimaging in the preoperative evaluation of children with drug-resistant epilepsy

  • Special Annual Issue
  • Published:
Child's Nervous System Aims and scope Submit manuscript

Abstract

Functional neuroimaging

Although the primary imaging modality in the management of epilepsy is magnetic resonance imaging MRI, functional neuroimaging with positron-emission tomography (PET) and single photon emission computed tomography (SPECT) often provides complementary information and, in a number of situations, provides unique information that cannot be obtained with MRI. The most commonly used PET tracers used for epilepsy evaluation are 2-deoxy-2-[18F]fluoro-d-glucose (FDG) and [11C]flumazenil (FMZ). Recently, interictal PET with alpha-[11C]methyl-l-tryptophan was found to be highly specific for the epileptic focus and can differentiate between epileptogenic and nonepileptogenic lesions in the same patient (e.g., in patients with tuberous sclerosis).

Discussion

In this review, we discuss clinical applications of these three PET tracers in drug-resistant temporal and extratemporal lobe epilepsy, selected epilepsy syndromes of childhood, lesional and nonlesional epilepsy, and the challenges of imaging secondary epileptic foci. A brief discussion of SPECT applications in epilepsy is also included. With further development of new tracers highly sensitive and specific for epileptogenic brain regions, the presurgical evaluation of refractory epilepsy will be greatly facilitated. Approximately 0.5 to 1.0% of the population suffer from epilepsy, of which 15–20% are intractable. Infants and children, whose seizures have a focal onset are refractory to anticonvulsants and are prolonged, tend to have the worst cognitive outcome [Meador KJ, Neurology 58 (Suppl 5):S21–S26, 2002]. Seizures themselves affect the developing brain and contribute to an adverse neurologic outcome (Holmes, Pediatric Neurology 33:1–110, 2005).

Conclusion

Therefore, in treating children with intractable epilepsy, it is important to consider seizure control and to give allowance for normal cognitive development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Asano E, Chugani DC, Muzik O, Shen C, Juhász C, Janisse J, Ager J, Canady A, Shah JR, Shah AK, Watson C, Chugani HT (2000) Multimodality imaging for improved detection of epileptogenic lesions in children with tuberous sclerosis complex. Neurology 54:1976–1984

    PubMed  CAS  Google Scholar 

  2. Asano E, Chugani DC, Juhász C, Muzik O, Chugani HT (2001) Surgical treatment of West syndrome. Brain Dev 23:668–676

    Article  PubMed  CAS  Google Scholar 

  3. Benedek K, Juhász C, Muzik O, Chugani DC, Chugani HT (2004) Metabolic changes of subcortical structures in intractable focal epilepsy. Epilepsia 45:1100–1105

    Article  PubMed  Google Scholar 

  4. Benedek K, Juhász C, Chugani DC, Muzik O, Chugani HT (2006) Longitudinal changes in cortical glucose hypometabolism in children with intractable epilepsy. J Child Neurol 21(1):26–30

    Article  PubMed  Google Scholar 

  5. Chiron C, Vera P, Kaminska A, Hollo A, Cieuta C, Ville D, Dulac O (1999) Single-photon emission computed tomography: ictal perfusion in childhood epilepsies. Brain Dev 21:444–446

    Article  PubMed  CAS  Google Scholar 

  6. Chugani DC, Chugani HT, Muzik O, Shah JR, Shah AK, Canady A, Mangner TJ, Chakraborty PK (1998) Imaging epileptogenic tubers in children with tuberous sclerosis complex using alpha-[11C]methyl-l-tryptophan positron emission tomography. Ann Neurol 44:858–866

    Article  PubMed  CAS  Google Scholar 

  7. Chugani HT, Shields WD, Shewmon DA, Olson DM, Phelps ME, Peacock WJ (1990) Infantile spasms: I. PET identifies focal cortical dysgenesis in cryptogenic cases for surgical treatment. Ann Neurol 27:406–413

    Article  PubMed  CAS  Google Scholar 

  8. Chugani HT, Shewmon DA, Shields WD, Sankar R, Comair Y, Vinters HV, Peacock WJ (1993) Surgery for intractable infantile spasms: neuroimaging perspectives. Epilepsia 34:764–771

    Article  PubMed  CAS  Google Scholar 

  9. Chugani HT, Shewmon D, Khanna S, Phelps ME (1993) Interictal and postictal focal hypermetabolism on positron emission tomography. Pediatr Neurol 9:10–15

    Article  PubMed  CAS  Google Scholar 

  10. Chugani HT, Conti JR (1996) Etiologic classification of infantile spasms in 140 cases: role of positron emission tomography. J Child Neurol 11:44–48

    PubMed  CAS  Google Scholar 

  11. Chugani HT, Da Silva E, Chugani DC (1996) Infantile spasms: III. Prognostic implications of bitemporal hypometabolism on positron emission tomography. Ann Neurol 39:643–649

    Article  PubMed  CAS  Google Scholar 

  12. Cross JH, Gordon I, Connelly A, Jackson GD, Johnson CL, Neville BG, Gadian DG (1997) Interictal 99Tc(m) HMPAO SPECT and 1H MRS in children with temporal lobe epilepsy. Epilepsia 38:338–345

    Article  PubMed  CAS  Google Scholar 

  13. Da Silva EA, Chugani DC, Muzik O, Chugani HT (1997) Identification of frontal lobe epileptic foci in children using positron emission tomography. Epilepsia 38:1198–1208

    Article  PubMed  Google Scholar 

  14. Duchowny M, Jayakar P, Resnick T, Harvey AS, Alvarez L, Dean P, Gilman J, Yaylali I, Morrison G, Prats A, Altman N, Birchansky S, Bruce J (1998) Epilepsy surgery in the first three years of life. Epilepsia 39:737–743

    Article  PubMed  CAS  Google Scholar 

  15. Eliashiv SD, Dewar S, Wainwright I, Engel J Jr, Fried I (1997) Long-term follow-up after temporal lobe resection for lesions associated with chronic seizures. Neurology 48:621–626

    PubMed  CAS  Google Scholar 

  16. Engel J (1996) Surgery for seizures. N Engl J Med 334:647–652

    Article  PubMed  Google Scholar 

  17. Engel J Jr, van Ness PC, Rasmussen TB, Ojemann LM (1993) Outcome with respect to epileptic seizures. In: Engel J Jr (ed) Surgical treatment of the epilepsies, 2nd edn. Raven, New York, pp 609–622

    Google Scholar 

  18. Frost JJ, Mayberg HS, Fisher RS, Douglass KH, Dannals RF, Links JM, Wilson AA, Ravert HT, Rosenbaum AE, Snyder SH (1988) Mu-opiate receptors measured by positron emission tomography are increased in temporal lobe epilepsy. Ann Neurol 23:231–237

    Article  PubMed  CAS  Google Scholar 

  19. Gaillard WD, Bhatia S, Bookheimer SY, Fazilat S, Sato S, Theodore WH (1995) FDG-PET and volumetric MRI in the evaluation of patients with partial epilepsy. Neurology 45:123–126

    Article  PubMed  CAS  Google Scholar 

  20. Gaillard WD, Kopylev L, Weinstein S, Conry J, Pearl PL, Spanaki MV, Fazilat S, Fazilat S, Venzina LG, Dubovsky E, Theodore WH (2002) Low incidence of abnormal (18)FDG-PET in children with new onset partial epilepsy: a prospective study. Neurology 58:717–722

    PubMed  CAS  Google Scholar 

  21. Hammers A, Koepp MJ, Richardson MP, Labbe C, Brooks DJ, Cunningham VJ, Duncan JS (2001) Central benzodiazepine receptors in malformations of cortical development: A quantitative study. Brain 124:1555–1565

    Article  PubMed  CAS  Google Scholar 

  22. Harvey AS, Bowe JM, Hopkins IJ, Shield LK, Cook DJ, Berkovic SF (1993) Ictal 99mTc-HMPAO single photon emission computed tomography in children with temporal lobe epilepsy. Epilepsia 34:869–877

    Article  PubMed  CAS  Google Scholar 

  23. Heiskala H, Launes J, Pihko H, Nikkinen P, Santavuori P (1993) Brain perfusion SPECT in children with frequent fits. Brain Dev 15:214–218

    Article  PubMed  CAS  Google Scholar 

  24. Henry TR, Chugani HT, Abou-Khalil BW et al (1993) Positron emission tomography. In: Engel J Jr (ed) Surgical treatment of the epilepsies, 2nd edn. Raven, New York, pp 211–243

    Google Scholar 

  25. Henry TR, Frey KA, Sackellares JC, Gilman S, Koeppe RA, Brunberg JA, Ross DA, Berent S, Young AB, Kuhl DE (1993) In vivo cerebral metabolism and central benzodiazepine-receptor binding in temporal lobe epilepsy. Neurology 43:1998–2006

    PubMed  CAS  Google Scholar 

  26. Holmes GL (2005) Effects of seizures on brain development: lessons from the laboratory. Pediatr Neurol 33:1–110

    Article  PubMed  Google Scholar 

  27. Iinuma K, Yokoyama H, Otsuki T, Yanai K, Watanabe T, Ido T, Itoh M (1993) Histamine H1 receptors in complex partial seizures. Lancet 341:238

    Article  PubMed  CAS  Google Scholar 

  28. Juhász C, Chugani HT (2003) Imaging the epileptic brain with positron emission tomography. Neuroimaging Clin N Am 13:705–716

    Article  PubMed  Google Scholar 

  29. Juhász C, Nagy F, Muzik O, Watson C, Shah J, Chugani HT (1999) 11C-flumazenil PET in patients with epilepsy with dual pathology. Epilepsia 40:566–574

    Article  PubMed  Google Scholar 

  30. Juhász C, Chugani DC, Muzik O, Watson C, Shah J, Shah A, Chugani HT (2000) Electroclinical correlates of flumazenil and fluorodeoxyglucose PET abnormalities in lesional epilepsy. Neurology 55:825–834

    PubMed  Google Scholar 

  31. Juhász C, Chugani DC, Muzik O, Shah A, Shah J, Watson C, Canady A, Chugani HT (2001) Relationship of flumazenil and glucose PET abnormalities to neocortical epilepsy surgery outcome. Neurology 56:1650–1658

    PubMed  Google Scholar 

  32. Juhász C, Chugani DC, Muzik O, Shah A, Asano E, Mangner TJ, Chakraborty PK, Sood S, Chugani HT (2003) Alpha-methyl-l-tryptophan PET detects epileptogenic cortex in children with intractable epilepsy. Neurology 60:960–968

    PubMed  Google Scholar 

  33. Juhász C, Chugani DC, Muzik O, Asano E, Shah A, Shah J, Sood S, Kagawa K, Benedek K, Chugani HT (2003) Cortical GABAA receptor binding abnormalities remote from the primary epileptic focus: what is their electrophysiologic and clinical significance? Epilepsia 44(Suppl. 9):311–312

    Google Scholar 

  34. Kagawa K, Chugani DC, Asano E, Juhász C, Muzik O, Shah A, Shah J, Sood S, Kupsky WJ, Mangner TJ, Chakraborty PK, Chugani HT (2005) Epilepsy surgery outcome in children with tuberous sclerosis complex evaluated with alpha-[11C]methyl-l-tryptophan positron emission tomography (PET). J Child Neurol 20:429–438

    PubMed  Google Scholar 

  35. Kaminska A, Chiron C, Ville D, Dellatolas G, Hollo A, Cieuta C, Jalin C, Delalonde O, Fohlen M, Vera P, Soufflet C, Dulac O (2003) Ictal SPECT in children with epilepsy: comparison with intracranial EEG and relation to postsurgical outcome. Brain 126:248–260

    Article  PubMed  CAS  Google Scholar 

  36. Kumlien E, Bergstrom M, Lilja A, Andersson J, Szekeres V, Westerberg CE, Westerberg G, Antoni G, Langstrom B (1995) Positron emission tomography with [11C]deuterium-deprenyl in temporal lobe epilepsy. Epilepsia 36:712–721

    Article  PubMed  CAS  Google Scholar 

  37. Kumlien E, Hartvig P, Valind S, Oye I, Tedroff J, Langstrom B (1999) NMDA-receptor activity visualized with (S)-[N-methyl-11C]ketamine and positron emission tomography in patients with medial temporal lobe epilepsy. Epilepsia 40:30–37

    Article  PubMed  CAS  Google Scholar 

  38. Kuzniecky R, Mountz JM, Wheatley G, Morawetz R (1993) Ictal single-photon emission computed tomography demonstrates localized in cortical dysplasia. Ann Neurol 34:627-631

    Article  PubMed  CAS  Google Scholar 

  39. Kuzniecky RI, Knowlton RC (2002) Neuroimaging of epilepsy. Semin Neurol 22:279–288

    Article  PubMed  Google Scholar 

  40. Lee SK, Lee SY, Kim KK, Hong KS, Lee DS, Chung CK (2005) Surgical outcome and prognostic factors of cryptogenic neocortical epilepsy. Ann Neurol 58:525–532

    Article  PubMed  Google Scholar 

  41. Marks DA, Katz A, Hoffer P, Spencer SS (1992) Localization of extratemporal epileptic foci during ictal single photon emission computed tomography. Ann Neurol 31:250–255

    Article  PubMed  CAS  Google Scholar 

  42. Matheja P, Kuwert T, Ludemann P, Weckesser M, Kellinghaus C, Schuierer G, Diehl B, Ringelstein EB, Schober O (2001) Temporal hypometabolism at the onset of cryptogenic temporal lobe epilepsy. Eur J Nucl Med 28:625–632

    Article  PubMed  CAS  Google Scholar 

  43. Meador KJ (2002) Cognitive outcomes and predictive factors in epilepsy. Neurology 58 (Suppl 5):S21–26

    PubMed  Google Scholar 

  44. Morrell F (1985) Secondary epileptogenesis in man. Arch Neurol 42:318–335

    PubMed  CAS  Google Scholar 

  45. Morrell F (1989) Varieties of human secondary epileptogenesis. J Clin Neurophysiol 6:227–275

    Article  PubMed  CAS  Google Scholar 

  46. Muzik O, da Silva E, Juhász C, Chugani DC, Shah J, Nagy F, Canady A, von Stockhausen HM, Herholz K, Gates J, Frost M, Ritter F, Watson C, Chugani HT (2000) Intracranial EEG vs. flumazenil and glucose PET in children with extratemporal lobe epilepsy. Neurology 54:171–179

    PubMed  CAS  Google Scholar 

  47. O’Brien TJ, So EL, Mullan BP, Hauser MF, Brinkmann BH, Jack CR Jr, Cascino GD, Meyer FB, Sharbrough FW (1999) Subtraction SPECT co-registered to MRI improves postictal SPECT localization of seizure foci. Neurology 52:137–146

    PubMed  CAS  Google Scholar 

  48. Richardson MP, Koepp MJ, Brooks DJ, Fish DR, Duncan JS (1996) Benzodiazepine receptors in focal epilepsy with cortical dysgenesis: an 11C-flumazenil PET study. Ann Neurol 40:188–198

    Article  PubMed  CAS  Google Scholar 

  49. Roach ES (2005) Seeing with new eyes: using positron emission tomography (PET) to identify epileptogenic tubers. J Child Neurol 20:399

    Article  PubMed  CAS  Google Scholar 

  50. Rowe CC, Berkovic SF, Sia ST, Austin M, McKay WJ, Kalnins RM, Bladin PF (1989) Localization of epileptic foci with postictal single photon emission computed tomography. Ann Neurol 26:660–668

    Article  PubMed  CAS  Google Scholar 

  51. Rowe CC, Berkovic SF, Austin MC, McKay WJ, Bladin PF (1991) Patterns of postictal blood flow in temporal lobe epilepsy: qualitative and quantitative analysis. Neurology 41:1096–1103

    PubMed  CAS  Google Scholar 

  52. Sauvageau A, Desjardins P, Lozeva V, Rose C, Hazell AS, Bouthillier A, Butterwort RF (2002) Increased expression of “peripheral-type” benzodiazepine receptors in human temporal lobe epilepsy: implications for PET imaging of hippocampal sclerosis. Metab Brain Dis 17:3–11

    Article  PubMed  CAS  Google Scholar 

  53. Savic I, Persson A, Roland P, Pauli S, Sedvall G, Widen L (1988) In vivo demonstration of reduced benzodiazepine receptor binding in human epileptic foci. Lancet 2:863–866

    Article  PubMed  CAS  Google Scholar 

  54. Savic I, Thorell JO, Roland P (1995) [11C]flumazenil positron emission tomography visualizes frontal epileptogenic regions. Epilepsia 36:1225–1232

    Article  PubMed  CAS  Google Scholar 

  55. Savic I, Blomqvist G, Halldin C, Litton JE, Gulyas B (1998) Regional increases in [11C]flumazenil binding after epilepsy surgery. Acta Neurol Scand 97:279–286

    Article  PubMed  CAS  Google Scholar 

  56. Swartz BE, Theodore WH, Sanabria E, Fisher RS (1992) Positron emission and single photon emission computed tomographic studies in the frontal lobe with emphasis on the relationship to seizure foci. Adv Neurol 57:487–497

    PubMed  CAS  Google Scholar 

  57. Swartz BE, Delgado-Escueta AV, Walsh GO, Rich JR, Dwan PS, DeSalles AA, Kaufman MH (1998) Surgical outcomes in pure frontal lobe epilepsy and foci that mimic them. Epilepsy Res 29:97–108

    Article  PubMed  CAS  Google Scholar 

  58. Szelies B, Sobesky J, Pawlik G, Mielke R, Bauer B, Herholz K, Heiss WD (2002) Impaired benzodiazepine receptor binding in perilesional cortex of patients with symptomatic epilepsies studied by [(11)C]-flumazenil PET. Eur J Neurol 9:137–142

    Article  PubMed  Google Scholar 

  59. Theodore WH, Dorwart R, Holmes M, Porter RJ, DiChiro G (1986) Neuroimaging in refractory partial seizures: comparison of PET, CT, and MRI. Neurology 36:750–759

    PubMed  CAS  Google Scholar 

  60. Toczek MT, Carson RE, Lang L, Ma Y, Spanaki MV, Der MG, Fazilat S, Kopylev L, Herscovitch P, Eckelman WC, Theodore WH (2003) PET imaging of 5-HT1A receptor binding in patients with temporal lobe epilepsy. Neurology 60:749–756

    Article  PubMed  CAS  Google Scholar 

  61. Van Ness PC (1993) Frontal and parietal lobe epilepsy. In: Wyllie E (ed) The treatment of the epilepsies. Lea & Febinger, Philadelphia, pp 525–532

    Google Scholar 

  62. Vera P, Kaminska A, Cieuta C, Hollo A, Stievenart JL, Gardin I, Ville D, Mangin JF, Plouin P, Dulac O, Chiron C (1999) Use of subtraction ictal SPECT co-registered to MRI for optimizing the localization of seizure foci in children. J Nucl Med 40:786–792

    PubMed  CAS  Google Scholar 

  63. Vinters HV, Fisher RS, Cornford ME, Mah V, Secor DL, De Rosa MJ, Comair YG, Peacock WJ, Shields WD (1992) Morphological substrates of infantile spasms: studies based on surgically resected cerebral tissue. Childs Nerv Syst 8:8–17

    Article  PubMed  CAS  Google Scholar 

  64. Wyllie E, Comair YG, Kotagal P, Bulacio J, Bingaman W, Ruggieri P (1998) Seizure outcome after epilepsy surgery in children and adolescents. Ann Neurol 44:740–748

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harry T. Chugani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sood, S., Chugani, H.T. Functional neuroimaging in the preoperative evaluation of children with drug-resistant epilepsy. Childs Nerv Syst 22, 810–820 (2006). https://doi.org/10.1007/s00381-006-0137-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00381-006-0137-0

Keywords

Navigation