Skip to main content
Log in

MRI for response assessment in metastatic bone disease

  • Oncology
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Background

Beyond lesion detection and characterisation, and disease staging, the quantification of the tumour load and assessment of response to treatment are daily expectations in oncology.

Methods

Bone lesions have been considered “non-measurable” for years as opposed to lesions involving soft tissues and “solid” organs like the lungs or liver, for which response evaluation criteria are used in every day practice. This is due to the lack of sensitivity, specificity and measurement capabilities of imaging techniques available for bone assessment, i.e. skeletal scintigraphy (SS), radiographs and computed tomography (CT).

Results

This paper reviews the possibilities and limitations of these techniques and highlights the possibilities of positron emission tomography (PET), but mainly concentrates on magnetic resonance imaging (MRI).

Conclusion

Practical morphological and quantitative approaches are proposed to evaluate the treatment response of bone marrow lesions using “anatomical” MRI. Recent developments of MRI, i.e. dynamic contrast-enhanced (DCE) imaging and diffusion-weighted imaging (DWI), are also covered.

Key Points

MRI offers improved evaluation of skeletal metastases and their response to treatment.

This new indication for MRI has wide potential impact on radiological practice.

MRI helps meet the expectations of the oncological community.

We emphasise the practical aspects, with didactic cases and illustrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Therasse P, Arbuck SG, Eisenhauer EA et al (2000) New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst 92:205–216

    Article  PubMed  CAS  Google Scholar 

  2. Scher HI, Morris MJ, Basch E, Heller G (2011) Endpoints and outcomes in castration-resistant prostate cancer: from clinical trials to clinical practice. J Clin Oncol 29:3695–3704

    Article  PubMed  Google Scholar 

  3. Gosfield E 3rd, Alavi A, Kneeland B (1993) Comparison of radionuclide bone scans and magnetic resonance imaging in detecting spinal metastases. J Nucl Med 34:2191–2198

    PubMed  Google Scholar 

  4. Lecouvet FE, Geukens D, Stainier A et al (2007) Magnetic resonance imaging of the axial skeleton for detecting bone metastases in patients with high-risk prostate cancer: diagnostic and cost-effectiveness and comparison with current detection strategies. J Clin Oncol 25:3281–3287

    Article  PubMed  Google Scholar 

  5. Ciray I, Astrom G, Andreasson I et al (2000) Evaluation of new sclerotic bone metastases in breast cancer patients during treatment. Acta Radiol 41:178–182

    Article  PubMed  CAS  Google Scholar 

  6. Messiou C, Cook G, deSouza NM (2009) Imaging metastatic bone disease from carcinoma of the prostate. Br J Cancer 101:1225–1232

    Article  PubMed  CAS  Google Scholar 

  7. Even-Sapir E, Metser U, Mishani E, Lievshitz G, Lerman H, Leibovitch I (2006) The detection of bone metastases in patients with high-risk prostate cancer: 99mTc-MDP planar bone scintigraphy, single- and multi-field-of-view SPECT, 18F-fluoride PET, and 18F-fluoride PET/CT. J Nucl Med 47:287–297

    PubMed  Google Scholar 

  8. Galasko CS (1995) Diagnosis of skeletal metastases and assessment of response to treatment. Clin Orthop Relat Res 312:64–75

    Google Scholar 

  9. Hamaoka T, Madewell JE, Podoloff DA, Hortobagyi GN, Ueno NT (2004) Bone imaging in metastatic breast cancer. J Clin Oncol 22:2942–2953

    Article  PubMed  Google Scholar 

  10. Lecouvet FE, Malghem J, Michaux L et al (1999) Skeletal survey in advanced multiple myeloma: radiographic versus MR imaging survey. Br J Haematol 106:35–39

    Article  PubMed  CAS  Google Scholar 

  11. Moulopoulos LA, Dimopoulos MA, Alexanian R, Leeds NE, Libshitz HI (1994) Multiple myeloma: MR patterns of response to treatment. Radiology 193:441–446

    PubMed  CAS  Google Scholar 

  12. Groves AM, Beadsmoore CJ, Cheow HK et al (2006) Can 16-detector multislice CT exclude skeletal lesions during tumour staging? Implications for the cancer patient. Eur Radiol 16:1066–1073

    Article  PubMed  Google Scholar 

  13. Bauerle T, Semmler W (2009) Imaging response to systemic therapy for bone metastases. Eur Radiol 19:2495–2507

    Article  PubMed  Google Scholar 

  14. Yang HL, Liu T, Wang XM, Xu Y, Deng SM (2011) Diagnosis of bone metastases: a meta-analysis comparing (18)FDG PET, CT, MRI and bone scintigraphy. Eur Radiol 21:2604–2617

    Article  PubMed  Google Scholar 

  15. Antoch G, Vogt FM, Freudenberg LS et al (2003) Whole-body dual-modality PET/CT and whole-body MRI for tumor staging in oncology. JAMA 290:3199–3206

    Article  PubMed  CAS  Google Scholar 

  16. Stafford SE, Gralow JR, Schubert EK et al (2002) Use of serial FDG PET to measure the response of bone-dominant breast cancer to therapy. Acad Radiol 9:913–921

    Article  PubMed  Google Scholar 

  17. Tateishi U, Gamez C, Dawood S, Yeung HW, Cristofanilli M, Macapinlac HA (2008) Bone metastases in patients with metastatic breast cancer: morphologic and metabolic monitoring of response to systemic therapy with integrated PET/CT. Radiology 247:189–196

    Article  PubMed  Google Scholar 

  18. De Giorgi U, Mego M, Rohren EM et al (2010) 18F-FDG PET/CT findings and circulating tumor cell counts in the monitoring of systemic therapies for bone metastases from breast cancer. J Nucl Med 51:1213–1218

    Article  PubMed  Google Scholar 

  19. Du Y, Cullum I, Illidge TM, Ell PJ (2007) Fusion of metabolic function and morphology: sequential [18F]fluorodeoxyglucose positron-emission tomography/computed tomography studies yield new insights into the natural history of bone metastases in breast cancer. J Clin Oncol 25:3440–3447

    Article  PubMed  Google Scholar 

  20. Shankar LK, Hoffman JM, Bacharach S et al (2006) Consensus recommendations for the use of 18F-FDG PET as an indicator of therapeutic response in patients in National Cancer Institute Trials. J Nucl Med 47:1059–1066

    PubMed  CAS  Google Scholar 

  21. Vande Berg BC, Lecouvet FE, Michaux L, Ferrant A, Maldague B, Malghem J (1998) Magnetic resonance imaging of the bone marrow in hematological malignancies. Eur Radiol 8:1335–1344

    Article  PubMed  CAS  Google Scholar 

  22. Daldrup-Link HE, Franzius C, Link TM et al (2001) Whole-body MR imaging for detection of bone metastases in children and young adults: comparison with skeletal scintigraphy and FDG PET. AJR Am J Roentgenol 177:229–236

    Article  PubMed  CAS  Google Scholar 

  23. Ghanem N, Uhl M, Brink I et al (2005) Diagnostic value of MRI in comparison to scintigraphy, PET, MS-CT and PET/CT for the detection of metastases of bone. Eur J Radiol 55:41–55

    Article  PubMed  CAS  Google Scholar 

  24. Schmidt GP, Schoenberg SO, Schmid R et al (2007) Screening for bone metastases: whole-body MRI using a 32-channel system versus dual-modality PET-CT. Eur Radiol 17:939–949

    Article  PubMed  Google Scholar 

  25. Vande Berg BC, Lecouvet FE, Galant C, Maldague BE, Malghem J (2005) Normal variants and frequent marrow alterations that simulate bone marrow lesions at MR imaging. Radiol Clin N Am 43:761–770

    Article  PubMed  Google Scholar 

  26. Tombal B, Rezazadeh A, Therasse P, Van Cangh PJ, Vande Berg B, Lecouvet FE (2005) Magnetic resonance imaging of the axial skeleton enables objective measurement of tumor response on prostate cancer bone metastases. Prostate 65:178–187

    Article  PubMed  Google Scholar 

  27. Lecouvet FE, Simon M, Tombal B, Jamart J, Vande Berg BC, Simoni P (2010) Whole-body MRI (WB-MRI) versus axial skeleton MRI (AS-MRI) to detect and measure bone metastases in prostate cancer (PCa). Eur Radiol 20:2973–2982

    Article  PubMed  CAS  Google Scholar 

  28. Lecouvet FE, El Mouedden J, Collette L et al (2012) Can whole-body magnetic resonance imaging with diffusion-weighted imaging replace Tc 99m bone scanning and computed tomography for single-step detection of metastases in patients with high-risk prostate cancer? Eur Urol. doi:10.1016/j.eururo.2012.02.020

  29. Schmidt GP, Reiser MF, Baur-Melnyk A (2009) Whole-body MRI for the staging and follow-up of patients with metastasis. Eur J Radiol 70:393–400

    Article  PubMed  Google Scholar 

  30. Baur-Melnyk A, Buhmann S, Becker C et al (2008) Whole-body MRI versus whole-body MDCT for staging of multiple myeloma. AJR Am J Roentgenol 190:1097–1104

    Article  PubMed  Google Scholar 

  31. Lecouvet FE, De Nayer P, Garbar C et al (1998) Treated plasma cell lesions of bone with MRI signs of response to treatment: unexpected pathological findings. Skeletal Radiol 27:692–695

    Article  PubMed  CAS  Google Scholar 

  32. Malghem J, Vande Berg B, Noël H, Maldague B (1995) Imagerie de la moelle normale et de ses variations. In: S. Sintzoff, J.D Laredo, M. Caroit (eds) Imagerie de l’os et de la moelle osseuse, Getroa Opus XXII, Sauramps Medical Montpellier pp 123–134

  33. Hwang S, Panicek DM (2007) Magnetic resonance imaging of bone marrow in oncology, Part 2. Skeletal Radiol 36:1017–1027

    Article  PubMed  Google Scholar 

  34. Ryan SP, Weinberger E, White KS et al (1995) MR imaging of bone marrow in children with osteosarcoma: effect of granulocyte colony-stimulating factor. AJR Am J Roentgenol 165:915–920

    Article  PubMed  CAS  Google Scholar 

  35. Ciray I, Lindman H, Astrom KG, Bergh J, Ahlstrom KH (2001) Early response of breast cancer bone metastases to chemotherapy evaluated with MRI. Acta Radiol 42:198–206

    PubMed  CAS  Google Scholar 

  36. Saip P, Tenekeci N, Aydiner A et al (1999) Response evaluation of bone metastases in breast cancer: value of magnetic resonance imaging. Cancer Investig 17:575–580

    Article  CAS  Google Scholar 

  37. Padhani AR, Koh DM (2011) Diffusion MR imaging for monitoring of treatment response. Magn Reson Imaging Clin N Am 19:181–209

    Article  PubMed  Google Scholar 

  38. Lecouvet FE, Vande Berg BC, Malghem J, Omoumi P, Simoni P (2009) Diffusion-weighted MR imaging: adjunct or alternative to T1-weighted MR imaging for prostate carcinoma bone metastases? Radiology 252:624

    Article  PubMed  Google Scholar 

  39. Koh DM, Takahara T, Imai Y, Collins DJ (2007) Practical aspects of assessing tumors using clinical diffusion-weighted imaging in the body. Magn Reson Med Sci 6:211–224

    Article  PubMed  Google Scholar 

  40. Charles-Edwards EM, deSouza NM (2006) Diffusion-weighted MRI and its application to cancer. Cancer Imaging 6:135–143

    Article  PubMed  Google Scholar 

  41. Reischauer C, Froehlich JM, Koh DM et al (2010) Bone metastases from prostate cancer: assessing treatment response by using diffusion-weighted imaging and functional diffusion maps—initial observations. Radiology 257:523–531

    Article  PubMed  Google Scholar 

  42. Messiou C, Collins DJ, Giles S, de Bono JS, Bianchini D, de Souza NM (2011) Assessing response in bone metastases in prostate cancer with diffusion weighted MRI. Eur Radiol 21:2169–2177

    Article  PubMed  CAS  Google Scholar 

  43. Koh DM, Blackledge M, Collins DJ et al (2009) Reproducibility and changes in the apparent diffusion coefficients of solid tumours treated with combretastatin A4 phosphate and bevacizumab in a two-centre phase I clinical trial. Eur Radiol 19:2728–2738

    Article  PubMed  Google Scholar 

  44. Vassiliou V, Andreopoulos D, Frangos S, Tselis N, Giannopoulou E, Lutz S (2011) Bone metastases: assessment of therapeutic response through radiological and nuclear medicine imaging modalities. Clin Oncol 23:632–645

    Article  CAS  Google Scholar 

  45. Biffar A, Sourbron S, Schmidt G et al (2010) Measurement of perfusion and permeability from dynamic contrast-enhanced MRI in normal and pathological vertebral bone marrow. Magn Reson Med 64:115–124

    Article  PubMed  Google Scholar 

  46. O’Connor JP, Jackson A, Parker GJ, Jayson GC (2007) DCE-MRI biomarkers in the clinical evaluation of antiangiogenic and vascular disrupting agents. Br J Cancer 96:189–195

    Article  PubMed  Google Scholar 

  47. Bauerle T, Merz M, Komljenovic D, Zwick S, Semmler W (2010) Drug-induced vessel remodeling in bone metastases as assessed by dynamic contrast enhanced magnetic resonance imaging and vessel size imaging: a longitudinal in vivo study. Clin Cancer Res 16:3215–3225

    Article  PubMed  Google Scholar 

  48. Tofts PS, Brix G, Buckley DL et al (1999) Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: standardized quantities and symbols. J Magn Reson Imaging 10:223–232

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The works by Dr Lecouvet and Dr Tombal are supported by grants from the following non-profit organisations: Fondation Saint Luc, FNRS Télévie and Fondation contre le Cancer.

Some of the material and patients included in this article are part of series published in scientific papers or book chapters by the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. E. Lecouvet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lecouvet, F.E., Larbi, A., Pasoglou, V. et al. MRI for response assessment in metastatic bone disease. Eur Radiol 23, 1986–1997 (2013). https://doi.org/10.1007/s00330-013-2792-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-013-2792-3

Keywords

Navigation