Skip to main content

Advertisement

Log in

Clinical significance of primary lesion FDG uptake for choice between oesophagectomy and endoscopic submucosal dissection for resectable oesophageal squamous cell carcinomas

  • Nuclear Medicine
  • Published:
European Radiology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Objectives

To correlate primary oesophageal squamous cell carcinoma (SCC) 18F-fluoro-deoxyglucose (FDG) uptake with pathological factors and examine its significance regarding choice of therapy.

Methods

We retrospectively examined the factors affecting visible and non-visible FDG uptake in 37 primary lesions in 32 oesophageal SCC patients who underwent PET/CT before oesophagectomy or endoscopic submucosal dissection (ESD). We divided the lesions into pathological depth invasion ≥sm2 oesophagectomy (n = 18) and ≤sm1 ESD (n = 19) indicated groups and compared the diagnostic accuracy of FDG-PET with that of endoscopic ultrasound (EUS) performed for 23 superficial lesions to discriminate between these groups.

Results

There were 17 visible and 20 non-visible lesions. The lesion visibility was significantly higher in the larger (≥40 mm), non-flat type, more deeply invaded, positive vascular invasion (P < 0.001 each), positive nodal metastasis (P = 0.04) and higher Glut-1 score (P = 0.005) tumour groups. When the visible and non-visible lesions indicated a need for oesophagectomy and ESD respectively, the sensitivity, specificity and accuracy of oesophagectomy were 94% (17/18), 100% (19/19) and 97% (36/37) and those of EUS were 75% (3/4), 79% (15/19) and 78% (18/23) respectively.

Conclusions

Primary lesion FDG visibility can be one of the indicators for choosing between oesophagectomy and ESD for resectable oesophageal SCCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Endo M, Kawano T (1997) Detection and classification of early squamous cell esophageal cancer. Dis Esophagus 10:155–158

    PubMed  CAS  Google Scholar 

  2. Murata Y, Suzuki S, Ohta M et al (1996) Small ultrasonic probes for determination of the depth of superficial esophageal cancer. Gastrointest Endosc 44:23–28

    Article  PubMed  CAS  Google Scholar 

  3. Kato H, Tachimori Y, Watanabe H, Yamaguchi H, Ishikawa T, Itabashi M (1990) Superficial esophageal carcinoma. Surgical treatment and the results. Cancer 66:2319–2323

    Article  PubMed  CAS  Google Scholar 

  4. Kato H, Tachimori Y, Mizobuchi S, Igaki H, Ochiai A (1993) Cervical, mediastinal, and abdominal lymph node dissection (three-field dissection) for superficial carcinoma of the thoracic esophagus. Cancer 72:2879–2882

    Article  PubMed  CAS  Google Scholar 

  5. Fujita H, Sueyoshi S, Yamana H et al (2001) Optimum treatment strategy for superficial esophageal cancer: endoscopic mucosal resection versus radical esophagectomy. World J Surg 25:424–431

    Article  PubMed  CAS  Google Scholar 

  6. Shimizu Y, Tsukagoshi H, Fujita M, Hosokawa M, Kato M, Asaka M (2002) Long-term outcome after endoscopic mucosal resection in patients with esophageal squamous cell carcinoma invading the muscularis mucosae or deeper. Gatrointest Endosc 56:387–390

    Article  Google Scholar 

  7. Fujishiro M, Yahagi N, Kakushima N et al (2006) Endoscopic submucosal dissection of esophageal squamous cell neoplasms. Clin Gastroenterol Hepatol 4:688–694

    Article  PubMed  Google Scholar 

  8. Himeno S, Yasuda S, Shimada H, Tajima T, Makuuchi H (2002) Evaluation of esophageal cancer by positron emission tomography. Jpn J Clin Oncol 32:340–346

    Article  PubMed  Google Scholar 

  9. Kato H, Miyazaki T, Nakajima M et al (2005) The incremental effect of positron emission tomography on diagnostic accuracy in the initial staging of esophageal carcinoma. Cancer 103:148–156

    Article  PubMed  Google Scholar 

  10. Hsu WH, Hsu PK, Wang SJ et al (2009) Positron emission tomography-computed tomography in predicting locoregional invasion in esophageal squamous cell carcinoma. Ann Thorac Surg 87:1564–1568

    Article  PubMed  Google Scholar 

  11. van Westreenen HL, Westreterp M, Bossuyt PM et al (2004) Systemic review of the staging performance of 18F-fluorodeoxyglucose positron emission tomography in esophageal cancer. J Clin Oncol 22:3805–3812

    Article  PubMed  Google Scholar 

  12. van Vliet EP, Heijenbrok-Kal MH, Hunink MG, Kuipers EJ, Siersema PD (2008) Staging investigations for oesophageal cancer: a meta-analysis. Br J Cancer 98:547–557

    Article  PubMed  Google Scholar 

  13. Kato H, Kuwano H, Nakajima M et al (2002) Comparison between positron emission tomography and computed tomography in the use of the assessment of esophageal carcinoma. Cancer 94:921–928

    Article  PubMed  Google Scholar 

  14. Rizk N, Downey RJ, Akhurst T et al (2006) Preoperative 18[F]-fluoro-deoxyglucose positron emission tomography standardized uptake values predict survival after esophageal adenocarcinoma resection. Ann Thorac Surg 81:1076–1081

    Article  PubMed  Google Scholar 

  15. Cerfolio RJ, Bryant AS (2006) Maximum standardized uptake values on positron emission tomography of esophageal cancer predicts stage, tumor biology, and survival. Ann Thorac Surg 82:391–395

    Article  PubMed  Google Scholar 

  16. Chung HW, Lee KH, Lee EJ et al (2008) Comparison of uptake characteristics and prognostic value of 201Tl and 18F-FDG in esophageal cancer. World J Surg 32:69–75

    Article  PubMed  Google Scholar 

  17. Kato H, Miyazaki T, Nakajima M, Fukuchi M, Manda R, Kuwano H (2004) Value of positron emission tomography in the diagnosis of recurrent oesophageal carcinoma. Br J Surg 91:1004–1009

    Article  PubMed  CAS  Google Scholar 

  18. Guo H, Zhu H, Xi Y et al (2007) Diagnostic and prognostic value of 18F-FDG PET/CT for patients with suspected recurrence from squamous cell carcinoma of the esophagus. J Nucl Med 48:1251–1258

    Article  PubMed  Google Scholar 

  19. Brücher BL, Weber W, Bauer M et al (2001) Neoadjuvant therapy of esophageal squamous cell carcinoma: response evaluation by positron emission tomography. Ann Surg 233:300–309

    Article  PubMed  Google Scholar 

  20. Downey RJ, Akhrust T, Ilson D et al (2003) Whole body 18FDG-PET and the response of esophageal cancer to induction therapy: results of a prospective trial. J Clin Oncol 21:428–432

    Article  PubMed  Google Scholar 

  21. Miyata H, Doki Y, Yasuda T et al (2008) Evaluation of clinical significance of 18F-fluorodeoxyglucose positron emission tomography in superficial squamous cell carcinomas of the thoracic esophagus. Dis Esophagus 21:144–150

    Article  PubMed  CAS  Google Scholar 

  22. Little SG, Rice TW, Bybel B et al (2007) Is FDG-PET indicated for superficial esophageal cancer? Eur J Cardiothorac Surg 31:791–796

    Article  PubMed  Google Scholar 

  23. Greene FL, Page DL, Fleming ID, Fritz A, Balch CM, Haller DG et al (2002) Esophagus. In: American Joint Committee on Cancer (AJCC) cancer staging manual. 6th ed. Springer-Verlag, New York, p 91–8

  24. Society JE, President Takubo K (2009) Japanese classification of esophageal cancer, tenth edition, part 1. Esophagus 6:1–25

    Article  Google Scholar 

  25. Hiyoshi Y, Watanabe M, Imamura Y et al (2009) The relationship between the glucose transporter type 1 expression and 18F-fluorodeoxyglucose uptake in esophageal squamous cell carcinoma. Oncology 76:286–292

    Article  PubMed  CAS  Google Scholar 

  26. Japanese Society for Esophageal Diseases. President Isono K. The Japanese Esophageal Society (2002) guidelines for the treatment of esophageal cancer, Tokyo, Kanehara& Co., Ltd, 2002 [Japanese]

  27. Neto C, Zhuang H, Ghesani N, Alavi A (2001) Detection of Barrett’s esophagus superimposed by esophageal cancer by FDG positron emission tomography. Clin Nucl Med 26:1060

    Article  PubMed  CAS  Google Scholar 

  28. Roedl JB, Colen RR, King K, Fischman AJ, Mueller PR, Blake MA (2008) Visual PET/CT scoring for nonspecific 18F-FDG uptake in the differentiation of early malignant and benign esophageal lesions. AJR Am J Roentgenol 191:515–521

    Article  PubMed  Google Scholar 

  29. Tohma T, Okazumi S, Makino H et al (2005) Relationship between glucose transporter, and hexokinase and FDG-PET in esophageal cancer. Hepatogastroenterology 52:486–490

    PubMed  CAS  Google Scholar 

  30. Kubota R, Yamada S, Kubota K, Ishiwata K, Tamahashi N, Ido T (1992) Intratumoral distribution of fluorine-18-fuluolodeoxyglucose in vivo: high accumulation in macrophages and granulation tissues studied by microautoradiography. J Nucl Med 33:1972–1980

    PubMed  CAS  Google Scholar 

  31. Hubner KF, McDonald TW, Niethammer JG, Smith GT, Gould HR, Buonocore E (1993) Assessment of primary and metastatic ovarian cancer by positron emission tomography (PET) using 2-[18F]deoxyglucose (2-[18F]FDG). Gynecol Oncol 51:197–204

    Article  PubMed  CAS  Google Scholar 

  32. Hamberg LM, Hunter GJ, Alpert NM, Choi NC, Babich JW, Fischman AJ (1994) The dose uptake ratio as an index of glucose metabolism: useful parameter of oversimplification? J Nucl Med 35:1308–1312

    PubMed  CAS  Google Scholar 

  33. Yamada S, Kubota K, Kubota R, Ido T, Tamahashi N (1995) High accumulation of fluorine-18-fluorodeoxyglucose in turpentine-induced inflammatory tissue. J Nucl Med 36:1301–1306

    PubMed  CAS  Google Scholar 

  34. Gupta N, Gill H, Graeber G, Bishop H, Hurst J, Stephens T (1998) Dynamic positron emission tomography with F-18 fluorodeoxyglucose imaging in differentiation of benign from malignant lung/mediastinal lesions. Chest 114:1105–1111

    Article  PubMed  CAS  Google Scholar 

  35. Lodge MA, Lucas JD, Marsden PK, Cronin BF, O’Doherty MJ, Smith MA (1999) A PET study of 18FDG in soft tissue masses. Eur J Nucl Med 26:22–30

    Article  PubMed  CAS  Google Scholar 

  36. Boerner AR, Weckesser M, Herzog H et al (1999) Optimal scan time for fluorine-18 fluorodeoxyglucose positron emission tomography in breast cancer. Eur J Nucl Med 26:226–230

    Article  PubMed  CAS  Google Scholar 

  37. Hustinx R, Smith RJ, Benard F et al (1999) Dual time point fluorine-18 fluorodeoxyglucose positron emission tomography: a potential method to differentiate malignancy from inflammation and normal tissue in the head and neck. Eur J Nucl Med 26:1345–1348

    Article  PubMed  CAS  Google Scholar 

  38. Kubota K, Itoh M, Ozaki K et al (2001) Advantage of delayed whole-body FDG-PET imaging for tomour detection. Eur J Nucl Med 28:696–703

    Article  PubMed  CAS  Google Scholar 

  39. Zhuang H, Pourdehnad M, Lambright ES et al (2001) Dual time point 18F-FDG PET imaging for differentiating malignant from inflammatory processes. J Nucl Med 42:1412–1417

    PubMed  CAS  Google Scholar 

  40. Xiu Y, Bhutani C, Dhurairaj T et al (2007) Dual-time point FDG PET imaging in the evaluation of pulmonary nodules with minimally increased metabolic activity. Clin Nucl Med 32:101–105

    Article  PubMed  Google Scholar 

  41. Chen CJ, Lee BF, Yao WJ et al (2008) Dual-phase 18F-FDG PET in the diagnosis of pulmonary nodules with an initial standard uptake value less than 2.5. AJR Am J Roentgenol 191:475–479

    Article  PubMed  Google Scholar 

  42. Shinya T, Rai K, Okumura Y et al (2009) Dual-time-point F-18 FDG PET/CT for evaluation of intrathoracic lymph nodes in patients with non-small cell lung cancer. Clin Nucl Med 34:216–221

    Article  PubMed  Google Scholar 

  43. Suga K, Kawakami Y, Hiyama A, Matsunaga N (2009) Differentiation of FDG-avid loco-regional recurrent and compromised benign lesions after surgery for breast cancer with dual-time point F-18-fluorodeoxy-glucose PET/CT scan. Ann Nucl Med 23:399–407

    Article  PubMed  Google Scholar 

  44. Suga K, Kawakami Y, Hiyama A et al (2009) Dual-time point 18F-FDG PET/CT scan for differentiation between 18F-FDG-avid non-small cell lung cancer and benign lesions. Ann Nucl Med 23:427–435

    Article  PubMed  Google Scholar 

  45. Suga K, Kawakami Y, Hiyama A et al (2009) Differential diagnosis between 18F-FDG-avid metastatic lymph nodes in non-small cell lung cancer and benign nodes on dual-time point PET/CT scan. Ann Nucl Med 23:523–531

    Article  PubMed  Google Scholar 

  46. Hu Q, Wang W, Zhong X et al (2009) Dual-time-point FDG PET for the evaluation of locoregional lymph nodes in thoracic esophageal squamous cell cancer. Eur J Radiol 70:320–324

    Article  PubMed  Google Scholar 

  47. Zytoon AA, Murakami K, El-Kholy MR, El-Shorbagy E, Ebied O (2009) Breast cancer with low FDG uptake: characterization by means of dual-time point FDG-PET/CT. Eur J Radiol 70:530–538

    Article  PubMed  Google Scholar 

  48. D’Souza MM, Marwaha RK, Sharma R et al (2010) Prospective evaluation of solitary thyroid nodule on 18F-FDG PET/CT and high-resolution ultrasonography. Ann Nucl Med 24:345–355

    Article  PubMed  Google Scholar 

  49. Cloran FJ, Banks KP, Song WS, Kim Y, Bradley YC (2010) Limitations of dual time point PET in the assessment of lung nodules with low FDG avidity. Lung Cancer 68:66–71

    Article  PubMed  Google Scholar 

  50. Lan XL, Zhang YX, Wu ZJ, Jia Q, Wei H, Gao ZR (2008) The value of dual time point 18F-FDG PET imaging for the differentiation between malignant and benign lesions. Clin Radiol 63:756–764

    Article  PubMed  Google Scholar 

  51. Uesaka D, Demura Y, Ishizaki T et al (2008) Evaluation of dual-time-point 18F-FDG PET for staging in patients with lung cancer. J Nucl Med 49:1606–1612

    Article  PubMed  Google Scholar 

  52. Inoue A, Tomiyama N, Tatsumi M et al (2009) 18F-FDG PET for the evaluation of thymic epithelial tumors: correlation with the World Health Organization classification in addition to dual-time-point imaging. Eur J Nucl Med Mol Imaging 36:1219–1225

    Article  PubMed  Google Scholar 

  53. Caprio MG, Cangiano A, Imbriaco M et al (2010) Dual-time-point [18F]-FDG PET/CT in the diagnostic evaluation of suspicious breast lesions. Radiol Med 115:215–224

    Article  PubMed  CAS  Google Scholar 

  54. MacDonald K, Searle J, Lyburn I (2011) The role of dual time point FDG PET imaging in the evaluation of solitary pulmonary nodules with an initial standard uptake less than 2.5. Clin Radiol 66:244–250

    Article  PubMed  CAS  Google Scholar 

  55. Nakamoto Y, Higashi T, Sakahara H et al (2000) Delayed 18F-fluoro-2-deoxy-D-glucose positron emission tomography scan for differentiation between malignant and benign lesions in the pancreas. Cancer 89:2547–2554

    Article  PubMed  CAS  Google Scholar 

  56. Van Westreenen HL, Plukker JT, Cobben DC, Verhoogt CJ, Groen H, Jager PL (2005) Prognostic value of the standardized uptake value in esophageal cancer. AJR Am J Roentgenol 185:436–440

    PubMed  Google Scholar 

  57. Yamamoto H (2007) Technology insight: endoscopic submucosal dissection of gastrointestinal neoplasms. Nat Clin Pract Gastroenterol Hepatol 4:511–520

    Article  PubMed  Google Scholar 

  58. Eguchi T, Nakanishi Y, Shimoda T et al (2006) Histopathological criteria for additional treatment after endoscopic mucosal resection for esophageal cancer: analysis of 464 surgically resected cases. Mod Pathol 19:475–480

    Article  PubMed  Google Scholar 

  59. Endo M, Yoshino K, Kawano T, Nagai K, Inoue H (2000) Clinicopathologic analysis of lymph node metastasis in surgically resected superficial cancer of the thoracic esophagus. Dis Esophagus 13:125–129

    Article  PubMed  CAS  Google Scholar 

  60. Puli SR, Reddy JB, Bechtold ML, Antillon D, Ibdah JA, Antillon MR (2008) Staging accuracy of esophageal cancer by endoscopic ultrasound: a meta-analysis and systemic review. World J Gastroenterol 14:1479–1490

    Article  PubMed  Google Scholar 

  61. Seewald S, Ang TL, Soehendra N (2007) Radial EUS: the clinical impact of T staging. Minerva Med 98:305–311

    PubMed  CAS  Google Scholar 

  62. Rampado S, Bocus P, Battaglia G, Ruol A, Portale G, Ancona E (2008) Endoscopic ultrasound: accuracy in staging superficial carcinomas of the esophagus. Ann Thorac Surg 85:251–256

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masatoyo Nakajo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakajo, M., Nakajo, M., Tani, A. et al. Clinical significance of primary lesion FDG uptake for choice between oesophagectomy and endoscopic submucosal dissection for resectable oesophageal squamous cell carcinomas. Eur Radiol 21, 2396–2407 (2011). https://doi.org/10.1007/s00330-011-2196-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-011-2196-1

Keywords

Navigation