Skip to main content
Log in

Signal intensity in T2’ magnetic resonance imaging is related to brain glioma grade

  • Neuro
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

T2’ values reflect the presence of deoxyhaemoglobin related to high local oxygen extraction. We assessed the feasibility of T2’ imaging to display regions with high metabolic activity in brain gliomas.

Methods

MRI was performed in 25 patients (12 female; median age 46 years; range 2–69) with brain gliomas with additional T2 and T2* sequences. T2’ maps were derived from T2 and T2*. Dynamic susceptibility weighted contrast (DSC) perfusion was performed in 12/25 patients. Images were visually assessed by two readers and five ROIs were evaluated for each patient. Pearson correlation, Mann–Whitney and Kruskal–Wallis tests were applied for statistical analysis.

Results

Three patients were not further evaluated because of artefacts. Mean values of high-grade (III–IV) gliomas showed significantly lower T2’ values than low-grade (II) gliomas (p < 0.001). An inverse relationship was observed between rCBV and sqr (T2’) (r = −0.463, p < 0.001). No correlation was observed between T2’ and rCBV for grade II tumours (r = 0.038; p = 0.875).

Conclusions

High-grade tumours revealed lower T2’ values, presumably because of higher oxygen consumption in proliferating tissue. Our results indicate that T2’ imaging can be used as an alternative to DSC perfusion in the detection of subtle deviations in tumour metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Aronen HJ, Gazit IE, Louis DN, Buchbinder BR, Pardo FS, Weisskoff RM, Harsh GR, Cosgrove GR, Halpern EF, Hochberg FH et al (1994) Cerebral blood volume maps of gliomas: comparison with tumor grade and histologic findings. Radiology 191:41–51

    PubMed  CAS  Google Scholar 

  2. Jackson RJ, Fuller GN, Abi-Said D, Lang FF, Gokaslan ZL, Shi WM, Wildrick DM, Sawaya R (2001) Limitations of stereotactic biopsy in the initial management of gliomas. Neuro Oncol 3:193–200

    PubMed  CAS  Google Scholar 

  3. Mittler MA, Walters BC, Stopa EG (1996) Observer reliability in histological grading of astrocytoma stereotactic biopsies. J Neurosurg 85:1091–1094

    Article  PubMed  CAS  Google Scholar 

  4. Prayson RA, Agamanolis DP, Cohen ML, Estes ML, Kleinschmidt-DeMasters BK, Abdul-Karim F, McClure SP, Sebek BA, Vinay R (2000) Interobserver reproducibility among neuropathologists and surgical pathologists in fibrillary astrocytoma grading. J Neurol Sci 175:33–39

    Article  PubMed  CAS  Google Scholar 

  5. Lupo JM, Cha S, Chang SM, Nelson SJ (2005) Dynamic susceptibility-weighted perfusion imaging of high-grade gliomas: characterization of spatial heterogeneity. AJNR Am J Neuroradiol 26:1446–1454

    PubMed  Google Scholar 

  6. Lupo JM, Cha S, Chang SM, Nelson SJ (2007) Analysis of metabolic indices in regions of abnormal perfusion in patients with high-grade glioma. AJNR Am J Neuroradiol 28:1455–1461

    Article  PubMed  CAS  Google Scholar 

  7. Law M, Yang S, Wang H, Babb JS, Johnson G, Cha S, Knopp EA, Zagzag D (2003) Glioma grading: sensitivity, specificity, and predictive values of perfusion MR imaging and proton MR spectroscopic imaging compared with conventional MR imaging. AJNR Am J Neuroradiol 24:1989–1998

    PubMed  Google Scholar 

  8. Majos C, Alonso J, Aguilera C, Serrallonga M, Perez-Martin J, Acebes JJ et al (2003) Proton magnetic resonance spectroscopy (H MRS) of human brain tumours: assessment of differences between tumour types and its applicability in brain tumour categorization. Eur Radiol 13:582–91

    PubMed  Google Scholar 

  9. Tamiya T, Kinoshita K, Ono Y et al (2000) Proton magnetic resonance spectroscopy reflects cellular proliferative activity in astrocytomas. Neuroradiology 42:333–338

    Article  PubMed  CAS  Google Scholar 

  10. Law M, Yang S, Babb JS, Knopp EA, Golfinos JG, Zagzag D, Johnson G (2004) Comparison of cerebral blood volume and vascular permeability from dynamic susceptibility contrast-enhanced perfusion MR imaging with glioma grade. AJNR Am J Neuroradiol 25:746–755

    PubMed  Google Scholar 

  11. Hakyemez B, Erdogan C, Bolca N, Yildirim N, Gokalp G, Parlak M (2006) Evaluation of different cerebral mass lesions by perfusion-weighted MR imaging. J Magn Reson Imaging 24:817–824

    Article  PubMed  Google Scholar 

  12. Knopp EA, Cha S, Johnson G, Mazumdar A, Golfinos JG, Zagzag D, Miller DC, Kelly PJ, Kricheff II (1999) Glial neoplasms: dynamic contrast-enhanced T2*-weighted MR imaging. Radiology 211:791–798

    PubMed  CAS  Google Scholar 

  13. Ludemann L, Grieger W, Wurm R, Budzisch M, Hamm B, Zimmer C (2001) Comparison of dynamic contrast-enhanced MRI with WHO tumour grading for gliomas. Eur Radiol 11:1231–1241

    Article  PubMed  CAS  Google Scholar 

  14. Mills SJ, Patankar TA, Haroon HA, Baleriaux D, Swindell R, Jackson A (2006) Do cerebral blood volume and contrast transfer coefficient predict prognosis in human glioma? AJNR Am J Neuroradiol 27:853–858

    PubMed  CAS  Google Scholar 

  15. Shin JH, Lee HK, Kwun BD, Kim JS, Kang W, Choi CG, Suh DC (2002) Using relative cerebral blood flow and volume to evaluate the histopathologic grade of cerebral gliomas: preliminary results. AJR Am J Roentgenol 179:783–789

    PubMed  Google Scholar 

  16. Zonari P, Baraldi P, Crisi G (2007) Multimodal MRI in the characterization of glial neoplasms: the combined role of single-voxel MR spectroscopy, diffusion imaging and echo-planar perfusion imaging. Neuroradiology 49:795–803

    Article  PubMed  Google Scholar 

  17. Haris M, Gupta RK, Singh A, Husain N, Husain M, Pandey CM, Srivastava C, Behari S, Rathore RK (2008) Differentiation of infective from neoplastic brain lesions by dynamic contrast-enhanced MRI. Neuroradiology 50:531–540

    Article  PubMed  Google Scholar 

  18. Sugahara T, Korogi Y, Kochi M, Ikushima I, Hirai T, Okuda T, Shigematsu Y, Liang L, Ge Y, Ushio Y et al (1998) Correlation of MR imaging-determined cerebral blood volume maps with histologic and angiographic determination of vascularity of gliomas. AJR Am J Roentgenol 171:1479–1486

    PubMed  CAS  Google Scholar 

  19. Danchaivijitr N, Waldman AD, Tozer DJ, Benton CE, Brasil Caseiras G, Tofts PS, Rees JH, Jager HR (2008) Low-grade gliomas: do changes in rCBV measurements at longitudinal perfusion-weighted MR imaging predict malignant transformation? Radiology 247:170–178

    Article  PubMed  Google Scholar 

  20. Law M, Young RJ, Babb JS, Peccerelli N, Chheang S, Gruber ML, Miller DC, Golfinos JG, Zagzag D, Johnson G (2008) Gliomas: predicting time to progression or survival with cerebral blood volume measurements at dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. Radiology 247:490–498

    Article  PubMed  Google Scholar 

  21. Law M, Oh S, Babb JS, Wang E, Inglese M, Zagzag D, Knopp EA, Johnson G (2006) Low-grade gliomas: dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging—prediction of patient clinical response. Radiology 238:658–667

    Article  PubMed  Google Scholar 

  22. Kato T, Shinoda J, Oka N, Miwa K, Nakayama N, Yano H, Maruyama T, Muragaki Y, Iwama T (2008) Analysis of 11C-methionine uptake in low-grade gliomas and correlation with proliferative activity. AJNR Am J Neuroradiol 29:1867–1871

    Article  PubMed  CAS  Google Scholar 

  23. Siemonsen S, Fitting T, Thomalla G, Horn P, Finsterbusch J, Summers P, Saager C, Kucinski T, Fiehler J (2008) T2’ imaging predicts infarct growth beyond the acute diffusion-weighted imaging lesion in acute stroke. Radiology 248:979–986

    Article  PubMed  Google Scholar 

  24. Brooks DJ, Luthert P, Gadian D, Marsden CD (1989) Does signal-attenuation on high-field T2-weighted MRI of the brain reflect regional cerebral iron deposition? Observations on the relationship between regional cerebral water proton T2 values and iron levels. J Neurol Neurosurg Psychiatry 52:108–111

    Article  PubMed  CAS  Google Scholar 

  25. Ding XQ, Kucinski T, Wittkugel O, Goebell E, Grzyska U, Gorg M, Kohlschutter A, Zeumer H (2004) Normal brain maturation characterized with age-related T2 relaxation times: an attempt to develop a quantitative imaging measure for clinical use. Invest Radiol 39:740–746

    Article  PubMed  Google Scholar 

  26. Geisler BS, Brandhoff F, Fiehler J, Saager C, Speck O, Rother J, Zeumer H, Kucinski T (2006) Blood-oxygen-level-dependent MRI allows metabolic description of tissue at risk in acute stroke patients. Stroke 37:1778–1784

    Article  PubMed  Google Scholar 

  27. Moenninghoff C, Maderwald S, Theysohn JM, Kraff O, Ladd ME, El Hindy N, van de Nes J, Forsting M, Wanke I (2010) Imaging of adult astrocytic brain tumours with 7 T MRI: preliminary results. Eur Radiol 20:704–713

    Article  PubMed  Google Scholar 

  28. Cha S, Knopp EA, Johnson G, Wetzel SG, Litt AW, Zagzag D (2002) Intracranial mass lesions: dynamic contrast-enhanced susceptibility-weighted echo-planar perfusion MR imaging. Radiology 223:11–29

    Article  PubMed  Google Scholar 

  29. Kassner A, Annesley DJ, Zhu XP, Li KL, Kamaly-Asl ID, Watson Y, Jackson A (2000) Abnormalities of the contrast re-circulation phase in cerebral tumors demonstrated using dynamic susceptibility contrast-enhanced imaging: a possible marker of vascular tortuosity. J Magn Reson Imaging 11:103–113

    Article  PubMed  CAS  Google Scholar 

  30. Calamante F, Lythgoe MF, Pell GS, Thomas DL, King MD, Busza AL, Sotak CH, Williams SR, Ordidge RJ, Gadian DG (1999) Early changes in water diffusion, perfusion, T1, and T2 during focal cerebral ischemia in the rat studied at 8.5 T. Magn Reson Med 41:479–485

    Article  PubMed  CAS  Google Scholar 

  31. Caseiras GB, Thornton JS, Yousry T, Benton C, Rees J, Waldman AD, Jager HR (2008) Inclusion or exclusion of intratumoral vessels in relative cerebral blood volume characterization in low-grade gliomas: does it make a difference? AJNR Am J Neuroradiol 29:1140–1141

    Article  PubMed  Google Scholar 

  32. Adamson AJ, Rand SD, Prost RW, Kim TA, Schultz C, Haughton VM (1998) Focal brain lesions: effect of single-voxel proton MR spectroscopic findings on treatment decisions. Radiology 209:73–78

    PubMed  CAS  Google Scholar 

  33. Barker PB, Glickson JD, Bryan N (1993) In vivo magnetic resonance spectroscopy of human brain tumours. Top Magn Reson Imaging 5:32–45

    Article  PubMed  CAS  Google Scholar 

  34. Castillo M, Kwock L, Scatliff J, Mukherji SK (1998) Proton MR spectroscopy in neoplastic and non-neoplastic brain disorders. Magn Reson Imaging Clin N Am 6:1–20

    PubMed  CAS  Google Scholar 

  35. Dowling C, Bollen AW, Noworolski SM, McDermott MW, Barbaro NM, Day MR, Henry RG, Chang SM, Dillon WP, Nelson SJ et al (2001) Preoperative proton MR spectroscopic imaging of brain tumors: correlation with histopathologic analysis of resection specimens. AJNR Am J Neuroradiol 22:604–612

    PubMed  CAS  Google Scholar 

  36. Minn H (2005) PET and SPECT in low-grade glioma. Eur J Radiol 56:171–8

    Article  PubMed  Google Scholar 

  37. Popperl G, Kreth FW, Herms J, Koch W, Mehrkens JH, Gildehaus FJ et al (2006) Analysis of 18F-FET PET for grading of recurrent gliomas: is evaluation of uptake kinetics superior to standard methods? J Nucl Med 47:393–403

    PubMed  Google Scholar 

  38. Rachinger W, Goetz C, Popperl G, Gildehaus FJ, Kreth FW, Holtmannspotter M et al (2005) Positron emission tomography with O-(2-[18F]fluoroethyl)-l-tyrosine versus magnetic resonance imaging in the diagnosis of recurrent gliomas. Neurosurgery 57:505–511, discussion 505–511

    Article  PubMed  Google Scholar 

  39. Jain R, Scarpace LM, Ellika S, Torcuator R, Schultz LR, Hearshen D et al (2010) Imaging response criteria for recurrent gliomas treated with bevacizumab: role of diffusion weighted imaging as an imaging biomarker. J Neurooncol 96:423–31

    Article  PubMed  CAS  Google Scholar 

  40. Koeller KK, Rushing EJ (2005) From the archives of the AFIP: oligodendroglioma and its variants: radiologic-pathologic correlation. Radiographics 25:1669–88

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

L.S. is grateful to the Erasmus Program of the European Union for supporting her stay at Hamburg Eppendorf Universitaetsklinikum. The development of the T2’ technique was supported by the European Union (S.S., Proposal/Contract 027294-I-Know-STREP). Several of the patients were part of the German Glioma Network (107940). J.F. has received speakers’ fees from BRACCO. Funding sources had no influence on the acquisition, analysis or interpretation of the data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Einar Goebell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saitta, L., Heese, O., Förster, AF. et al. Signal intensity in T2’ magnetic resonance imaging is related to brain glioma grade. Eur Radiol 21, 1068–1076 (2011). https://doi.org/10.1007/s00330-010-2004-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-010-2004-3

Keywords

Navigation