Skip to main content
Log in

Effect of CT scan protocols on x-ray-induced DNA double-strand breaks in blood lymphocytes of patients undergoing coronary CT angiography

  • Experimental
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Aims

To compare in vivo DNA lesions induced during helical and sequential coronary computed tomography angiography (CTA) and to evaluate the effect of CT parameters on double-strand break (DSB) levels.

Methods

Thirty-six patients were examined with various CT protocols and modes (helical scan, n = 27; sequential scan, n = 9) either using a 64-slice dual-source or a 128-slice CT system. Blood samples were obtained before and 30 min after CT. Lymphocytes were isolated, stained against the phosphorylated histone variant γ-H2AX, and DSBs were visualised by using fluorescence microscopy.

Results

DSB yields 30 min after CTA ranged from 0.04 to 0.71 per cell and showed a significant correlation to DLP (ρ = 0.81, p < 0.00001). Median DSB yield and median DLP were significantly lower after sequential compared to helical CT examinations (0.11 vs. 0.37 DSBs/cell and 249 vs. 958 mGy cm, p < 0.00001). Additional calcium scoring led to an increase in DLP (p = 0.15) and DSB levels (p = 0.04). DSB levels normalised to the DLP showed a significant correlation to the attenuation of the blood (ρ = 0.53, p = 0.01) and a negative correlation to the body mass index of the patients (ρ = −0.37, p = 0.06).

Conclusion

γ-H2AX immunofluorescence microscopy allows one to determine dose-related effects on x-ray-induced DSB levels and to consider individual factors which cannot be monitored by physical dose measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hausleiter J, Meyer T, Hermann F et al (2009) Estimated radiation dose associated with cardiac CT angiography. JAMA 301(5):500–507

    Article  CAS  PubMed  Google Scholar 

  2. Paul JF, Abada HT (2007) Strategies for reduction of radiation dose in cardiac multislice CT. Eur Radiol 17:2028–2037

    Article  PubMed  Google Scholar 

  3. Achenbach S, Anders K, Kalender WA (2008) Dual-source cardiac computed tomography: image quality and dose considerations. Eur Radiol 18:1188–1198

    Article  PubMed  Google Scholar 

  4. Hausleiter J, Meyer T, Hadamitzky M et al (2006) Radiation dose estimates from cardiac multislice computed tomography in daily practice: impact of different scanning protocols on effective dose estimates. Circulation 113:1305–1310

    Article  PubMed  Google Scholar 

  5. Leschka S, Scheffel H, Desbiolles L et al (2007) Image quality and reconstruction intervals of dual-source CT coronary angiography: recommendations for ECG-pulsing windowing. Invest Radiol 42:543–549

    Article  PubMed  Google Scholar 

  6. Herzog BA, Husmann L, Burkhard N et al (2008) Accuracy of low-dose computed tomography coronary angiography using prospective electrocardiogram-triggering: first clinical experience. Eur Heart J 29:3037–3042

    Article  PubMed  Google Scholar 

  7. Stolzmann P, Leschka S, Scheffel H et al (2008) Dual-source CT in step-and-shoot mode: noninvasive coronary angiography with low radiation dose. Radiology 249:71–80

    Article  PubMed  Google Scholar 

  8. Earls JP, Berman EL, Urban BA et al (2008) Prospectively gated transverse coronary CT angiography versus retrospectively gated helical technique: improved image quality and reduced radiation dose. Radiology 246:742–753

    Article  PubMed  Google Scholar 

  9. Hausleiter J, Meyer T (2008) Tips to minimize radiation exposure. J Cardiovasc Comput Tomogr 2:325–327

    Article  PubMed  Google Scholar 

  10. Deak P, van Straten M, Shrimpton PC, Zankl M, Kalender WA (2008) Validation of a Monte Carlo tool for patient-specific dose simulations in multi-slice computed tomography. Eur Radiol 18:759–772

    Article  PubMed  Google Scholar 

  11. Kalender WA, Schmidt B, Zankl M, Schmidt M (1999) A PC program for estimating organ dose and effective dose values in computed tomography. Eur Radiol 9:555–562

    Article  CAS  PubMed  Google Scholar 

  12. Bauchinger M (1995) Quantification of low-level radiation exposure by conventional chromosome aberration analysis. Mutat Res 339:177–189

    CAS  PubMed  Google Scholar 

  13. Edwards AA, Lindholm C, Darroudi F et al (2005) Review of translocations detected by FISH for retrospective biological dosimetry applications. Radiat Prot Dosim 113:396–402

    Article  CAS  Google Scholar 

  14. Lobrich M, Rief N, Kuhne M et al (2005) In vivo formation and repair of DNA double-strand breaks after computed tomography examinations. Proc Natl Acad Sci U S A 102:8984–8989

    Article  PubMed  Google Scholar 

  15. Rothkamm K, Balroop S, Shekhdar J, Fernie P, Goh V (2007) Leukocyte DNA damage after multi-detector row CT: a quantitative biomarker of low-level radiation exposure. Radiology 242:244–251

    Article  PubMed  Google Scholar 

  16. Flohr TG, McCollough CH, Bruder H et al (2006) First performance evaluation of a dual-source CT (DSCT) system. Eur Radiol 16:256–268

    Article  PubMed  Google Scholar 

  17. Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM (1998) DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem 273:5858–5868

    Article  CAS  PubMed  Google Scholar 

  18. Rothkamm K, Lobrich M (2003) Evidence for a lack of DNA double-strand break repair in human cells exposed to very low x-ray doses. Proc Natl Acad Sci U S A 100:5057–5062

    Article  CAS  PubMed  Google Scholar 

  19. Haberle L, Pfahlberg A, Gefeller O (2009) Assessment of multiple ordinal endpoints. Biom J 51:217–226

    Article  PubMed  Google Scholar 

  20. Rosenbaum PR (1994) Coherence in observational studies. Biometrics 50:368–374

    Article  CAS  PubMed  Google Scholar 

  21. Kuefner MA, Grudzenski S, Schwab SA et al (2009) DNA double-strand breaks and their repair in blood lymphocytes of patients undergoing angiographic procedures. Invest Radiol 44:440–446

    Article  CAS  PubMed  Google Scholar 

  22. Gutstein A, Dey D, Cheng V et al (2008) Algorithm for radiation dose reduction with helical dual source coronary computed tomography angiography in clinical practice. J Cardiovasc Comput Tomogr 2:311–322

    Article  PubMed  Google Scholar 

  23. Hermann F, Martinoff S, Meyer T et al (2008) Reduction of radiation dose estimates in cardiac 64-slice CT angiography in patients after coronary artery bypass graft surgery. Invest Radiol 43:253–260

    Article  PubMed  Google Scholar 

  24. McCollough CH, Primak AN, Saba O et al (2007) Dose performance of a 64-channel dual-source CT scanner. Radiology 243:775–784

    Article  PubMed  Google Scholar 

  25. Weustink AC, Mollet NR, Neefjes LA et al (2009) Preserved diagnostic performance of dual-source CT coronary angiography with reduced radiation exposure and cancer risk. Radiology 252:53–60

    Article  PubMed  Google Scholar 

  26. Grudzenski S, Kuefner MA, Heckmann MB, Uder M, Lobrich M (2009) Contrast medium-enhanced radiation damage caused by CT examinations. Radiology 253:706–714

    Article  PubMed  Google Scholar 

  27. Norman A, Cochran ST, Sayre JW (2001) Meta-analysis of increases in micronuclei in peripheral blood lymbphocytes after angiography or excretory urography. Radiat Res 155:740–743

    Article  CAS  PubMed  Google Scholar 

  28. Rube CE, Grudzenski S, Kuhne M et al (2008) DNA double-strand break repair of blood lymphocytes and normal tissues analysed in a preclinical mouse model: implications for radiosensitivity testing. Clin Cancer Res 14:6546–6555

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank C. Engert for excellent technical assistance and L. Distel for extraordinary collaboration in the laboratory. We also wish to acknowledge G. Muschiol for his support. This work was partly supported by a grant from “Bundesministerium für Forschung und Bildung”, Bonn, Germany [grant number BMBF 01 EV0708].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Kuefner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuefner, M.A., Grudzenski, S., Hamann, J. et al. Effect of CT scan protocols on x-ray-induced DNA double-strand breaks in blood lymphocytes of patients undergoing coronary CT angiography. Eur Radiol 20, 2917–2924 (2010). https://doi.org/10.1007/s00330-010-1873-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-010-1873-9

Keywords

Navigation