Skip to main content
Log in

Epithelial and stromal metabolite changes in the transition from cervical intraepithelial neoplasia to cervical cancer: an in vivo 1H magnetic resonance spectroscopic imaging study with ex vivo correlation

  • Magnetic Resonance
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

To investigate epithelial and stromal metabolite changes in cervical intraepithelial neoplasia (CIN) and cervical cancer in vivo and correlate findings with MR spectroscopy of tissue samples. Forty-seven women (19 with CIN, 28 with cervical cancer) underwent endovaginal MR at 1.5 T with T2-W and localised 2D MR spectroscopic imaging (PRESS, TR = 1,500 ms, TE = 135 ms). tCho, 2 ppm and -CH2 lipid peaks were measured in epithelial (>50% epithelium, no tumour), stromal (>50% stroma, no tumour) and tumour (>30% tumour) voxels. Unsuppressed water signal from the same voxel provided a concentration reference. 1H HR-MAS MR spectra were acquired from tissue in 37 patients (11.74 T, pulse-acquire and cpmg sequences, with water pre-saturation). Analysable data from 17 CIN and 25 cancer patients showed significant increases in tCho (p = 0.03) and 2 ppm (p = 0.007) in tumour compared with epithelial voxels from CIN patients, but not with epithelial voxels from cancer patients. No significant differences were seen in stroma from cancer compared with CIN patients. Differences in -CH2 lipids were not significant between groups. There was no significant correlation between in vivo and ex vivo tCho or -CH2 lipids. Estimated in vivo concentrations of tCho and 2 ppm resonances increase in tumour and adjacent epithelium in progression from CIN to cervical cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sitter B, Bathen T, Hagen B, Arentz C, Skjeldestad FE, Gribbestad IS (2004) Cervical cancer tissue characterized by high-resolution magic angle spinning MR spectroscopy. MAGMA 16:174–181

    Article  PubMed  CAS  Google Scholar 

  2. Bolan PJ, Meisamy S, Baker EH et al (2003) In vivo quantification of choline compounds in the breast with 1H MR spectroscopy. Magn Reson Med 50:1134–1143

    Article  PubMed  CAS  Google Scholar 

  3. Mueller-Lisse UG, Swanson MG, Vigneron DB, Kurhanewicz J (2007) Magnetic resonance spectroscopy in patients with locally confined prostate cancer: association of prostatic citrate and metabolic atrophy with time on hormone deprivation therapy, PSA level, and biopsy Gleason score. Eur Radiol 17:371–378

    Article  PubMed  Google Scholar 

  4. Mahon MM, Williams AD, Soutter WP et al (2004) 1H magnetic resonance spectroscopy of invasive cervical cancer: an in vivo study with ex vivo corroboration. NMR Biomed 17:1–9

    Article  PubMed  Google Scholar 

  5. De Silva SS, Payne GS, Thomas V, Carter P, Ind T, deSouza NM (2009) Investigation of metabolite changes in the transition from pre-invasive to invasive cervical cancer measured using (1)H and (31)P magic angle spinning MRS of intact tissue. NMR Biomed 22(2):191–8

    Article  PubMed  Google Scholar 

  6. Gruber S, Stadlbauer A, Mlynarik V, Gatterbauer B, Roessler K, Moser E (2005) Proton magnetic resonance spectroscopic imaging in brain tumor diagnosis. Neurosurg Clin N Am 16:101–14

    Article  PubMed  Google Scholar 

  7. Hourani R, Brant LJ, Rizk T, Weingart JD, Barker PB, Horska A (2008) Can proton MR spectroscopic and perfusion imaging differentiate between neoplastic and nonneoplastic brain lesions in adults? AJNR Am J Neuroradiol 29:366–372

    Article  PubMed  CAS  Google Scholar 

  8. Nelson SJ, Graves E, Pirzkall A et al (2002) In vivo molecular imaging for planning radiation therapy of gliomas: an application of 1H MRSI. J Magn Reson Imaging 16:464–476

    Article  PubMed  Google Scholar 

  9. Hu J, Yu Y, Kou Z et al (2008) A high spatial resolution 1H magnetic resonance spectroscopic imaging technique for breast cancer with a short echo time. Magn Reson Imaging 26:360–366

    Article  PubMed  Google Scholar 

  10. Hricak H (2005) MR imaging and MR spectroscopic imaging in the pre-treatment evaluation of prostate cancer. Br J Radiol 78(Spec No 2):S103–S111

    Article  PubMed  Google Scholar 

  11. Kwock L, Smith JK, Castillo M et al (2006) Clinical role of proton magnetic resonance spectroscopy in oncology: brain, breast, and prostate cancer. Lancet Oncol 7:859–868

    Article  PubMed  Google Scholar 

  12. Mueller-Lisse UG, Scherr M (2003) 1H magnetic resonance spectroscopy of the prostate. Radiology 43:481–488

    Article  CAS  Google Scholar 

  13. Gilderdale DJ, deSouza NM, Coutts GA et al (1999) Design and use of internal receiver coils for magnetic resonance imaging. Br J Radiol 72:1141–1151

    PubMed  CAS  Google Scholar 

  14. Star-Lack J, Nelson SJ, Kurhanewicz J, Huang LR, Vigneron DB (1997) Improved water and lipid suppression for 3D PRESS CSI using RF band selective inversion with gradient dephasing (BASING). Magn Reson Med 38:311–321

    Article  PubMed  CAS  Google Scholar 

  15. Provencher SW (2001) Automatic quantitation of localized in vivo 1H spectra with LCModel. NMR Biomed 14:260–264

    Article  PubMed  CAS  Google Scholar 

  16. Reinsberg SA, Payne GS, Riches SF et al (2007) Combined use of diffusion-weighted MRI and 1H MR spectroscopy to increase accuracy in prostate cancer detection. AJR Am J Roentgenol 188:91–98

    Article  PubMed  Google Scholar 

  17. Govindaraju V, Young K, Maudsley AA (2000) Proton NMR chemical shifts and coupling constants for brain metabolites. NMR Biomed 13:129–153

    Article  PubMed  CAS  Google Scholar 

  18. Vanhamme L, van den BA, Van Huffel S (1997) Improved method for accurate and efficient quantification of MRS data with use of prior knowledge. J Magn Reson 129:35–43

    Article  PubMed  CAS  Google Scholar 

  19. Armitage P, Berry G, Matthews JNS (2001) Statistical Methods in Medical Research. Blackwell Science Ltd, Oxford

    Google Scholar 

  20. Pickles M, Boothi S, Manton D et al (2008) Proton Spectrscopy of Gynaecology Lesions at 3.0T in a Routine Clinical Setting. Proc Int Soc Magn Res Med 16:3844

    Google Scholar 

  21. Candiota AP, Majos C, Bassols A et al (2004) Assignment of the 2.03 ppm resonance in in vivo 1H MRS of human brain tumour cystic fluid: contribution of macromolecules. MAGMA 17:36–46

    Article  PubMed  CAS  Google Scholar 

  22. Andre E, Xu M, Yang D et al (2006) MR spectroscopy in sinus mucocele: N-acetyl mimics of brain N-acetylaspartate. AJNR Am J Neuroradiol 27:2210–2213

    PubMed  CAS  Google Scholar 

  23. Lee JH, Cho KS, Kim YM et al (1998) Localized in vivo 1H nuclear MR spectroscopy for evaluation of human uterine cervical carcinoma. AJR Am J Roentgenol 170:1279–1282

    PubMed  CAS  Google Scholar 

  24. Allen JR, Prost RW, Griffith OW, Erickson SJ, Erickson BA (2001) In vivo proton (H1) magnetic resonance spectroscopy for cervical carcinoma. Am J Clin Oncol 24:522–529

    Article  PubMed  CAS  Google Scholar 

  25. So P, Krausz T, Soutter W, Williams A, Bell J, deSouza N (1998) Regional biochemical variations in the normal uterine cervix by 1H MRS ex vivo. Proc Int Soc Magn Res Med 7:39

    Google Scholar 

  26. Schiebler ML, Miyamoto KK, White M, Maygarden SJ, Mohler JL (1993) In vitro high resolution 1H-spectroscopy of the human prostate: benign prostatic hyperplasia, normal peripheral zone and adenocarcinoma. Magn Reson Med 29:285–291

    Article  PubMed  CAS  Google Scholar 

  27. Carlstedt I, Lindgren H, Sheehan JK, Ulmsten U, Wingerup L (1983) Isolation and characterization of human cervical-mucus glycoproteins. Biochem J 211:13–22

    PubMed  CAS  Google Scholar 

  28. Toida T, Karkinuma N, Toyoda H, Imanari T (1994) 1H- NMR profile of Glycosaminoglycans in Human Urine. Anal Sci 10:537–541

    Article  CAS  Google Scholar 

  29. Murray R, Granner D, Mayes P (1996) Glycoproteins. Appleton & Lange, Stanford, Conneticut

    Google Scholar 

  30. Thornton D, Davies J, Carlstedt I (1997) Structure and biochemistry of human respiratory mucins. In: Rogers D, Lethem M (eds) Airway Mucus Basic Mechanisms and Clinical Perspectives. Birkhäuser Verlag, Basel, Switzerland

    Google Scholar 

  31. Brockhausen I (1999) Pathways of O-glycan biosynthesis in cancer cells. Biochim Biophys Acta 1473:67–95

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by Cancer Research UK (CUK) grant numbers C1353/A5408 and C1060/A808. We thank Mr. Paul Carter, Mr. Norman McWhinney, Mr. Mike Katesmark, Ms. Jane Bridges and Mr. David Milliken for their assistance with patient recruitment and sample collection and Dr. Valerie Thomas for her assistance with histopathology. We are grateful to nurses and medical staff at St George’s Hospital, Epsom and St. Helier Hospitals and at The Royal Marsden Hospital, for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nandita M. deSouza.

Additional information

This work was supported by Cancer Research UK (CUK) grant nos. C1353/A5408 and C1060/A808.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Silva, S.S., Payne, G.S., Morgan, V.A. et al. Epithelial and stromal metabolite changes in the transition from cervical intraepithelial neoplasia to cervical cancer: an in vivo 1H magnetic resonance spectroscopic imaging study with ex vivo correlation. Eur Radiol 19, 2041–2048 (2009). https://doi.org/10.1007/s00330-009-1363-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-009-1363-0

Keywords

Navigation