Skip to main content

Advertisement

Log in

Dual-modality FDG-PET/CT in follow-up of patients with recurrent iodine-negative differentiated thyroid cancer

  • Head and Neck
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

The usefulness of combined 2-[18F] fluoro-2-deoxy-D-glucose positron emission tomography and computed tomography (FDG-PET/CT) in locating suspected recurrence in patients with iodine-negative differentiated thyroid cancer (DTC) was evaluated. Thirty-six patients with DTC and suspected iodine-negative recurrence underwent restaging with FDG-PET/CT. The images of CT, FDG-PET, both modalities viewed side by side (CT+PET), and FDG-PET/CT were evaluated by two physicians separately. Imaging results were correlated with either histology (n = 20) and/or clinical follow-up of at least 36 months. Recurrent disease was diagnosed in 22/36 patients. FDG-PET alone, CT alone, CT+PET, and FDG-PET/CT showed a sensitivity of 82%, 73%, 91%, and 96%, respectively. Specificities were 79%, 71%, 79%, and 100%, respectively. FDG-PET/CT significantly improved specificity compared with CT+PET and resulted in a further treatment modification in 5/36 patients (14%). CT alone was especially sensitive for lung metastases, FDG-PET alone for the remainder of the body. Accurate fusion of functional and morphologic data by FDG-PET/CT improves the staging accuracy of patients with suspected recurrence of iodine-negative DTC. This has an impact on patient management in a substantial number of patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Gilliland FD, Hunt WC, Morris DM et al (1997) Prognostic factors for thyroid carcinoma: a population-based study of 15,698 cases from the Surveillance, Epidemiology and End Results (SEER) program 1973–1991. Cancer 79:564–573

    Article  PubMed  CAS  Google Scholar 

  2. Schlumberger MJ (1999) Diagnostic follow-up of well-differentiated thyroid carcinoma: historical perspective and current status. J Endocrinol Invest 22(11 Suppl):3–7

    PubMed  CAS  Google Scholar 

  3. Maxon HR (1999) Quantitative radioiodine therapy in the treatment of differentiated thyroid cancer. Q J Nucl Med 43:313–323

    PubMed  CAS  Google Scholar 

  4. Schlumberger MJ (1998) Papillary and follicular thyroid carcinoma. N Engl J Med 338:297–306

    Article  PubMed  CAS  Google Scholar 

  5. Frilling A, Gorges R, Tecklenborg K et al (2000) Value of preoperative diagnostic modalities in patients with recurrent thyroid carcinoma. Surgery 128:1067–1074

    Article  PubMed  CAS  Google Scholar 

  6. Grunwald F, Schomburg A, Bender H et al (1996) Fluorine-18 fluorodeoxyglucose positron emission tomography in the follow-up of differentiated thyroid cancer. Eur J Nucl Med 23:312–319

    Article  PubMed  CAS  Google Scholar 

  7. Stokkel MP, Duchateau CS, Dragoiescu C (2006) The value of FDG-PET in the follow-up of differentiated thyroid cancer: a review of the literature. Q J Nucl Med Mol Imaging 50:78–87

    PubMed  CAS  Google Scholar 

  8. Grünwald F, Kalicke T, Feine U et al (1999) Fluorine-18 fluorodeoxyglucose positron emission tomography in thyroid cancer: results of a multicentre study. Eur J Nucl Med 26:1547–1552

    Article  PubMed  Google Scholar 

  9. Wang W, Macapinlac H, Larson SM et al (1999) [18F]-2-fluoro-2-deoxy-D-glucose positron emission tomography localizes residual thyroid cancer in patients with negative diagnostic 131I whole body scans and elevated serum thyroglobulin levels. J Clin Endocrinol Metab 84:2291–2302

    Article  PubMed  CAS  Google Scholar 

  10. Scott GC, Meier DA, Dickinson CZ (1995) Cervical lymph node metastasis of thyroid papillary carcinoma imaged with fluorine-18-FDG, technetium-99 m pertechnetate and iodine-131-sodium iodide. J Nucl Med 36:1843–1845

    PubMed  CAS  Google Scholar 

  11. Chung JK, So Y, Lee JS et al (1999) Value of FDG PET in papillary thyroid carcinoma with negative I-131 whole-body scan. J Nucl Med 40:986–992

    PubMed  CAS  Google Scholar 

  12. Feine U, Lietzenmayer R, Hanke JP et al (1996) Fluorine-18-FDG and iodine-131-iodide uptake in thyroid cancer. J Nucl Med 37:1468–1472

    PubMed  CAS  Google Scholar 

  13. Weber WA, Avril N, Schwaiger M (1999) Relevance of positron emission tomography (PET) in oncology. Strahlenther Onkol 175:356–373

    Article  PubMed  CAS  Google Scholar 

  14. Schmidt GP, Schoenberg SO, Schmid R, Stahl R, Tiling R, Becker CR, Reiser MF, Baur-Melnyk A (2007) Screening for bone metastases: whole-body MRI using a 32-channel system versus dual-modality PET-CT. Eur Radiol 17:939–949

    Article  PubMed  Google Scholar 

  15. Veit P, Antoch G, Stergar H, Bockisch A, Forsting M, Kuehl H (2006) Detection of residual tumor after radiofrequency ablation of liver metastasis with dual-modality PET/CT: initial results. Eur Radiol 16:80–87

    Article  PubMed  Google Scholar 

  16. Wahl RL, Quint LE, Cieslak RD et al (1993) “Anatometabolic” tumor imaging: fusion of FDG PET with CT or MRI to localize foci of increased activity. J Nucl Med 34:1190–1197

    PubMed  CAS  Google Scholar 

  17. Freudenberg LS, Fischer M, Antoch G, Jentzen W, Gutzeit A, Rosenbaum SJ, Bockisch A, Egelhof T (2005) Dual modality of 18F-fluorodeoxyglucose-positron emission tomography/computed tomography in patients with cervical carcinoma of unknown primary. Med Princ Pract 14:155–160

    Article  PubMed  Google Scholar 

  18. Palmedo H, Bucerius J, Joe A, Strunk H, Hortling N, Meyka S, Roedel R, Wolff M, Wardelmann E, Biersack HJ, Jaeger U (2006) Integrated PET/CT in differentiated thyroid cancer: diagnostic accuracy and impact on patient management. J Nucl Med 47:616–624

    PubMed  Google Scholar 

  19. Zimmer LA, McCook B, Meltzer C, Fukui M, Bascom D, Snyderman C, Townsend DW, Johnson JT (2003) Combined positron emission tomography/computed tomography imaging of recurrent thyroid cancer. Otolaryngol Head Neck Surg 128:178–184

    Article  PubMed  Google Scholar 

  20. Nahas Z, Goldenberg D, Fakhry C, Ewertz M, Zeiger M, Ladenson PW, Wahl R, Tufano RP (2005) The role of positron emission tomography/computed tomography in the management of recurrent papillary thyroid carcinoma. Laryngoscope 115:237–243

    Article  PubMed  Google Scholar 

  21. Saab G, Driedger AA, Pavlosky W, McDonald T, Wong CY, Yoo J, Urbain JL (2006) Thyroid-stimulating hormone-stimulated fused positron emission tomography/computed tomography in the evaluation of recurrence in 131I-negative papillary thyroid carcinoma. Thyroid 16:267–272

    Article  PubMed  CAS  Google Scholar 

  22. Ong SC, Ng DC, Sundram FX (2005) Initial experience in use of fluorine-18-fluorodeoxyglucose positron emission tomography/computed tomography in thyroid carcinoma patients with elevated serum thyroglobulin but negative iodine-131 whole body scans. Singapore Med J 46:297–301

    PubMed  CAS  Google Scholar 

  23. Fleming ID, Cooper JS, Henson DE (eds) (1997) AJCC cancer staging manual. 5th edn. American Joint Committee on Cancer. Lippincott-Raven, Philadelphia

    Google Scholar 

  24. Beyer T, Antoch G, Müller S, Egelhof T, Freudenberg LS, Debatin J, Bockisch A (2004) Protocol considerations for combined PET/CT imaging. J Nucl Med 45(suppl 1):25S–35S

    PubMed  Google Scholar 

  25. Antoch G, Jentzen W, Freudenberg LS, Stattaus J, Mueller SP, Debatin JF, Bockisch A (2003) Effect of oral contrast agents on computed tomography-based positron emission tomography attenuation correction in dual-modality positron emission tomography/computed tomography imaging. Invest Radiol 38:784–789

    PubMed  CAS  Google Scholar 

  26. Brown LD, Cai TT, DasGupta A (2001) Interval estimation for a Binomial proportion. Stat Sci 16:101–133

    Google Scholar 

  27. Nanni C, Rubello D, Fanti S, Farsad M, Ambrosini V, Rampin L, Banti E, Carpi A, Muzzio P, Franchi R (2006) Role of 18F-FDG-PET and PET/CT imaging in thyroid cancer. Biomed Pharmacother 60:409–413

    Article  PubMed  CAS  Google Scholar 

  28. do Rosario PW, de Faria S, Bicalho L et al (2005) Ultrasonographic differentiation between metastatic and benign lymph nodes in patients with papillary thyroid carcinoma. J Ultrasound Med 24:1385–1389

    PubMed  Google Scholar 

  29. van den Brekel MW, Stel HV, Castelijns JA et al (1990) Cervical lymph node metastasis: assessment of radiological criteria. Radiology 177:379–384

    PubMed  Google Scholar 

  30. Gambhir SS, Czernin J, Schwimmer J, Silverman DH, Coleman RE, Phelps ME (2001) A tabulated summary of the FDG PET literature. J Nucl Med 42:1S–93S

    PubMed  CAS  Google Scholar 

  31. Buell U, Wieres FJ, Schneider W, Reinartz P (2004) 18FDG-PET in 733 consecutive patients with or without side-by-side CT evaluation: Analysis of 921 lesions. Nuklearmedizin 43:210–216

    PubMed  CAS  Google Scholar 

  32. Truong MT, Erasmus JJ, Munden RF, Marom EM, Sabloff BS, Gladish GW, Podoloff DA, Macapinlac HA (2004) Focal FDG uptake in mediastinal brown fat mimicking malignancy: a potential pitfall resolved on PET/CT. AJR Am J Roentgenol 183:1127–1132

    PubMed  Google Scholar 

  33. Hany TF, Gharehpapagh E, Kamel EM, Buck A, Himms-Hagen J, von Schulthess GK (2002) Brown adipose tissue: a factor to consider in symmetrical tracer uptake in the neck and upper chest region. Eur J Nucl Med Mol Imaging 29:1393–1398

    Article  PubMed  Google Scholar 

  34. Rosenbaum SJ, Lind T, Antoch G, Bockisch A (2006) False-positive FDG PET uptake—the role of PET/CT. Eur Radiol 16:1054–1065

    Article  PubMed  Google Scholar 

  35. Sisson JC, Ackermann RJ, Meyer MA et al (1993) Uptake of 18-fluoro-2-deoxy-D-glucose by thyroid cancer: implications for diagnosis and therapy. J Clin Endocrinol Metab 77:1090–1094

    Article  PubMed  CAS  Google Scholar 

  36. Bockisch A, Beyer T, Antoch G, Freudenberg LS, Kuhl H, Debatin JF, Muller SP (2004) Positron emission tomography/computed tomography-imaging protocols, artifacts, and pitfalls. Mol Imaging Biol 6:188–199

    Article  PubMed  Google Scholar 

  37. Kassenärztliche Bundesvereinigung: Richtlinien des Bundesausschusses der Ärzte und Krankenkassen über Kriterien zur Qualitätsbeurteilung in der radiologischen Diagnostik gemäß § 136 SGB V in der Fassung vom 17. Juni 1992 (veröffentlicht im Bundesanzeiger Nr. 183 b vom 29. September 1992), zuletzt geändert am 17. Dezember 1996 (veröffentlicht im Bundesanzeiger Nr. 49 vom 12. März 1997). Deutsches Ärzteblatt 1997; 94, A779–A787

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lutz S. Freudenberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Freudenberg, L.S., Frilling, A., Kühl, H. et al. Dual-modality FDG-PET/CT in follow-up of patients with recurrent iodine-negative differentiated thyroid cancer. Eur Radiol 17, 3139–3147 (2007). https://doi.org/10.1007/s00330-007-0682-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-007-0682-2

Keywords

Navigation