Skip to main content

Advertisement

Log in

Imaging readouts as biomarkers or surrogate parameters for the assessment of therapeutic interventions

  • Molecular Imaging
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Surrogate markers and biomarkers based on imaging readouts providing predictive information on clinical outcome are of increasing importance in the preclinical and clinical evaluation of novel therapies. They are primarily used in studies designed to establish evidence that the therapeutic principle is valid in a representative patient population or in an individual. A critical step in the development of (imaging) surrogates is validation: correlation with established clinical endpoints must be demonstrated. Biomarkers must not fulfill such stringent validation criteria; however, they should provide insight into mechanistic aspects of the therapeutic intervention (proof-of-mechanism) or document therapy efficacy with prognostic quality with regard to the long-term clinical outcome (proof of concept). Currently used imaging biomarkers provide structural, physiological and metabolic information. Novel imaging approaches annotate structure with molecular signatures that are tightly linked to the pathophysiology or to the therapeutic principle. These cellular and molecular imaging methods yield information on drug biodistribution, receptor expression and occupancy, and/or intra- and intercellular signaling. The design of novel target-specific imaging probes is closely related to the development of the therapeutic agents and should be considered early in the discovery phase. Significant technical and regulatory hurdles have to be overcome to foster the use of imaging biomarkers for clinical drug evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lesko LJ, Atkinson AJ (2001) Use of biomarkers and surrogate endpoints in drug development and regulatory decision making: criteria, validation, strategies. Annu Rev Pharmacol Toxicol 41:347–366

    Article  PubMed  CAS  Google Scholar 

  2. http://www.fda.govCderregulatorymedImagingdefault.htm. Innovation or Stagnation, Challenge and Opportunity on the critical Path to New Medical Products (March 2004)

  3. Woodcock J (2004) A Framework for Biomarker and Surrogate Endpoint Use in Drug Development. http://www.fda.govohrmsdocketsac04slides2004-4079S2_03_Woodcock.ppt

  4. Rudin M, Weissleder R (2003) Molecular imaging in drug discovery and development. Nature Rev Drug Disc 2:123–131

    Article  CAS  Google Scholar 

  5. Caplan LR (2004) Thrombolysis 2004: the good, the bad, and the ugly. Rev Neurol Dis 1:16–26

    PubMed  Google Scholar 

  6. Keir SL, Wardlaw JM (2000) Systematic review of diffusion and perfusion imaging in acute ischemic stroke. Stroke 31:2723–2731

    PubMed  CAS  Google Scholar 

  7. van der Toorn A, Sykova E, Dijkhurzen RM, Vorisek I, Vargova L, Skobisova E, van Lookeren-Campagne M, Reese T, Nicolay K (1996) Dynamic changes in water ADC, energy metabolism, extracellular space volume, and tortuosity in neonatal rat brain during global ischemia. Magn Reson Med 36:52–60

    Article  PubMed  Google Scholar 

  8. Neumann-Haefelin T, Wittsack HJ, Wenserski F, Siebler M, Seity RJ, Mödder U, Freund HL (1999) Diffusion- and perfusion-weighted MRI: the DWIPWI mismatch region in acute stroke. Stroke 30:1591–1597

    PubMed  CAS  Google Scholar 

  9. Miller JC, Sörensen AG (2005) Imaging biomarkers predictive of diseasetherapy outcome: ischemic stroke and drug development. In: Rudin M (ed) Imaging in drug discovery and development. Birkhäuser Basel, pp 319–356

  10. Rudin M, Beckmann N, Porszasz R, Reese T, Sauter A (1999) In vivo magnetic resonance in pharmaceutical research: current status and perspectives. NMR Biomed 12:69–97

    Article  PubMed  CAS  Google Scholar 

  11. Reese T, Porszasz R, Baumann D, Bochelen D, Boumezbeur F, McAllister KH, Sauter A, Bjelke B, Rudin B (2000) Cytoprotection does not preserve brain functionality in rats during acute post-stroke phase despite evidence of non-infarction provided by MRI. NMR Biomed 13:361–370

    Article  PubMed  CAS  Google Scholar 

  12. Sauter A, Reese T, Pórszász R, Baumann D, Rausch M, Rudin M (2002) Recovery of function in cytoprotected cerebral cortex in rat stroke model assessed by functional MRI. Magn Reson Med 47:759–765

    Article  PubMed  Google Scholar 

  13. Lehericy S, Marjanska M, Mesrob L, Sarazin M, Kinkingnehun S (2007) Magnetic resonance imaging of Alzheimer’s disease. Eur Radiol 17(2):347–362

    Article  PubMed  Google Scholar 

  14. Schott JM, Price SL, Frost C, Whitwell JL, Rossor MN, Fox NC (2005) Measuring atrophy in Alzheimer disease: a serial MRI study over 6 and 12 months. Neurology 65:119–124

    Article  PubMed  CAS  Google Scholar 

  15. Jack CR Jr, Petersen RC, Xu YC, O’Brien PC, Smith GE, Ivnik RJ, Boeve BF, Waring SC, Tangalos EG, Kokmen E. (1999) Prediction of AD with MRI-based hippocampal volume in mild cognitive impairment. Neurology 52:1397–1403

    PubMed  Google Scholar 

  16. Rapoport SI, Hatanpaa K, Brady DR, Chandrasekaran K (1996) Brain energy metabolism, cognitive function and down-regulated oxidative phosphorylation in Alzheimer disease. Neurodegeneration 5:473–476

    Article  PubMed  CAS  Google Scholar 

  17. Yetkin FZ, Rosenberg RN, Weiner MF, Purdy PD, Cullum CM (2006) FMRI of working memory in patients with mild cognitive impairment and probable Alzheimer’s disease. Eur Radiol 16:193–206

    Article  PubMed  Google Scholar 

  18. Mueggler T, Sturchler-Pierrat C, Baumann D, Rausch M, Staufenbiel M, Rudin M (2002) Compromised hemodynamic response in amyloid precursor protein transgenic mice. J Neuroscience 15:7218–7224

    Google Scholar 

  19. Ibach B, Haen E (2004) Acetylcholinesterase inhibition in Alzheimer’s Disease. Curr Pharm Des 10:231–251

    Article  PubMed  CAS  Google Scholar 

  20. Kuhl DE, Koeppe RA, Minoshima S, Snyder SE, Ficaro EP, Foster NL, Frey KA, Kilbourn MR (1999) In vivo mapping of cerebral acetylcholinesterase activity in aging and Alzheimer’s disease. Neurology 52:691–699

    PubMed  CAS  Google Scholar 

  21. Shiraishi T, Kikuchi T, Fukushi K, Shinotoh H, Nagatsuka S, Tanaka N, Ota T, Sato K, Hirano S, Tanada S, Iyo M, Irie T (2005) Estimation of plasma IC50 of donepezil hydrochloride for brain acetylcholinesterase inhibition in monkey using N-[11C]methylpiperidin-4-yl acetate ([11C]MP4A) and PET. Neuropsychopharmacology 30:2154–2161

    Article  PubMed  CAS  Google Scholar 

  22. Nordberg A, Lundqvist H, Hartvig P, Andersson J, Johansson M, Hellstrom-Lindahi E, Langstrom B (1997) Imaging of nicotinic and muscarinic receptors in Alzheimer’s disease: effect of tacrine treatment. Dement Geriatr Cogn Disord 8:78–84

    Article  PubMed  CAS  Google Scholar 

  23. Rombouts SA, Barkhof F, Van Meel CS, Scheltens P (2006) Alterations in brain activation during cholinergic enhancement with rivastigmine in Alzheimer’s disease. J Neurol Neurosurg Psychiatry 73:665–671

    Article  Google Scholar 

  24. Rausch M, Gentsch C, Enz A, Baumann D, Rudin M (2005) Characterization of CNS drugs by mapping changes in regional CBV in the rat: a study paradigm allowing for automated comparison of three-dimensional data obtained multiple imaging sessions. NMR Biomed 18:260–268

    Article  PubMed  CAS  Google Scholar 

  25. Benveniste H, Einstein G, Kim KR, Hulette C, Johnson GA (1999) Detection of neuritic plaques in Alzheimer’s disease by magnetic resonance microscopy. Proc Natl Acad Sci USA 96:14079–14084

    Article  PubMed  CAS  Google Scholar 

  26. Zhang J, Yarowsky P, Gordon MN, Di Carlo G, Munireddy S, van Zijl PC, Mori S (2004) Detection of amyloid plaques in mouse models of Alzheimer’s disease by magnetic resonance imaging. Magn Reson Med 51:452–457

    Article  PubMed  Google Scholar 

  27. Klunk WE, Engler H, Nordberg A, Wang Y, Blomqvist G, Holt DP, Bergstrom M, Savitcheva I, Huang GF, Estrada S, Ausen B, Debnath ML, Barletta J, Price JC, Sandell J, Lopresti BJ, Wall A, Koivisto P, Antoni G, Mathis CA, Langstrom B (2004) Imaging brain amyloid in Alzheimer’s disease with Pittsburgh Compound-B. Ann Neurol 55:306–319

    Article  PubMed  CAS  Google Scholar 

  28. Hintersteiner M, Frey P, Kinzy W, Kneuer R, Neumann U, Rudin M, Staufenbiel M, Wiederhold KH, Gremlich HU (2005) In vivo detection of amyloid deposits by near-infrared fluorescence imaging using a novel oxazine derivative as contrast agent. Nat Biotechnol 23:577–583

    Article  PubMed  CAS  Google Scholar 

  29. Verhoeff NP, Wilson AA, Takeshita S, Trop L, Hussey D, Singh K, Kung HF, Kung MP, Houle S (2004) In-vivo imaging of Alzheimer disease beta-amyloid with [11C]SB-13 PET. Am J Geriatr Psychiatry 12:584–595

    Article  PubMed  Google Scholar 

  30. Parvathy S, Davies P, Haroutunian V, Purohit DP, Davis KL, Mohs RC, Park H, Moran TM, Chan JY, Buxbaum JD (2001) Correlation between A(x-40-, A(x-42-, and A(x-43-containing amyloid plaques and cognitive decline. Arch Neuro 58:2025–2032

    Article  CAS  Google Scholar 

  31. Shields AF. Grierson JR, Kozawa SM, Zheng M (1996) Development of labelled thymidine analogues for imaging tumor proliferation. Nucl Med Biol 23:17–22

    Article  PubMed  CAS  Google Scholar 

  32. Laverman P, Boerman OC, Corstens FHM, Oyen WJG (2002) Fluorinated amino acids for tumor imaging with positron emission tomography. Eur J Nucl Med 29:681–690

    Article  CAS  Google Scholar 

  33. Hara T, Kosaka N, Shinoura N, Kondo T (1998) PET imaging of prostate cancer using carbon-11-choline. J Nucl Med 39:990–995

    PubMed  CAS  Google Scholar 

  34. DeGrado TR, Coleman RE, Wang S, Baldwin SW, Orr MD, Robertson CN, Polascik TJ, Price DT (2000) Synthesis and evaluation of 18F labeled choline as an oncologic tracer for positron emission tomography: initial findings with prostate cancer. Cancer Res 61:110–117

    Google Scholar 

  35. Shields AF, Grierson JR, Kozawa SM, Zheng M (1996) Development of labeled thymidine analogs for imaging tumor proliferation. Nucl Med Biol 23:17–22

    Article  PubMed  CAS  Google Scholar 

  36. Carnochan P, Brooks R (1999) Radiolabelled 5′-iodo′2′deoxyuridine: a promising alternative to [18F]-2-fluoro-deoxy-D-glucose for PET studies of early response to anticancer treatment. Nucl Med Biol 26:667–672

    Article  PubMed  CAS  Google Scholar 

  37. Sato K, Kameyama M, Ishiwata K, Katakura R, Yoshimoto T (1992) Metabolic changes of glioma following chemotherapy: An experimental study using four PET tracers. J Neuro-Oncol 14:81–89

    Article  CAS  Google Scholar 

  38. Busch H, Davis JR, Honig GR, Anderson DC, Nair PV, Nyhan WL (1995) The uptake of a variety of amino acids into nuclear proteins of tumors and other tissues. Cancer Res 19:1030–1039

    Google Scholar 

  39. Gillies RJ, Morse DL (2005) In vivo magnetic resonance spectroscopy in cancer. Annu Rev Biomed Eng 7:287–326

    Article  PubMed  CAS  Google Scholar 

  40. Hara T, Kosaka N, Shinoura N, Kondo T (1997) PET imaging of brain tumor with [methyl-11C]choline. J Nucl Med 38:842–847

    PubMed  CAS  Google Scholar 

  41. Stroobants S, Goeminne J, Seegers M, Dimitrijevic S, Dupont P, Nuyts J, Martens M, van der Borne B, Cole P, Sciot R, Dumez H, Silberman S, Mortelmans L, van Oosterom A (2003) 18f Positron emission tomography for the early prediction of response in advanced soft tissue sarcoma treated with imatinib mesylate (Gleevec (r)). Eur J Cancer 39:2012–2020

    Article  PubMed  CAS  Google Scholar 

  42. Padhani AR, Krohn KA, Lewis JS, Alber M (2006) Imaging oxygenation of human tumours. Eur Radiol. Oct 17; DOI 10.1007s00330-006-0431-y

  43. Padhani AR (2002) Dynamic contrast-enhanced MRI in clinical oncology: current status and future directions. J Magn Reson Imaging 16:407–422

    Article  PubMed  Google Scholar 

  44. Leach MO, Brindle KM, Evelhoch JL, Griffiths JR, Horsman MR, Jackson A, Jayson GC, Judson IR, Knopp MV, Maxwell RJ, McIntyre D, Padhani AR, Price P, Rathbone R, Rustin GJ, Tofts PS, Tozer GM, Vennart W, Waterton JC, Williams SR, Workman P; PharmacodynamicPharmacokinetic Technologies Advisory Committee, Drug Development Office, Cancer Research UK (2005) The assessment of antiangiogenic and antivascular therapies in early-stage clinical trials using magnetic resonance imaging: issues and recommendations. Br J Cancer 92:1599–1610

    Article  PubMed  CAS  Google Scholar 

  45. Drevs J, Schneider V (2006) The use of vascular biomarkers and imaging studies in the early clinical development of anti-tumour agents targeting angiogenesis. J Int Medicine 260:517–529

    Article  CAS  Google Scholar 

  46. Drevs J, Müller-Driver R, Wittig C, Fuxius S, Esser N, Hugenschmidt H, Konerding MA, Allegrini PR, Wood J, Hennig J, Unger C, Marmé D (2002) PTK787ZK 222584, a specific vascular endothelial growth factor receptor tyrosine kinases inhibitor, affects the anatomy of the tumor vascular bed and the functional vascular properties as detected by dynamic enhanced magnetic resonance imaging. Cancer Res 62:4015–4022

    PubMed  CAS  Google Scholar 

  47. Rudin M, McSheehy PMJ, Allegrini PR, Kindler-Baumann D, Bequet M, Brecht K, Brueggen J, Ferretti S, Schaeffer F, Schnell C, Wood J (2005) PTK787ZK222584, a tyrosine kinase inhibitor of vascular endothelial growth factor receptor, reduces uptake of the contrast agent GdDOTA by murine orthotopic B16BL6 melanoma tumors and inhibits their growth in vivo. NMR Biomed 18:308–321

    Article  PubMed  CAS  Google Scholar 

  48. Morgan B, Thomas AL, Drevs J, Hennig J, Buchert M, Jivan A, Horsfield MA, Mross K, Ball HA, Lee L et al (2003) Dynamic contrast-enhanced magnetic resonance imaging as a biomarker for the pharmacological response of PTK787ZK 222584, an inhibitor of the vascular endothelial growth factor receptor tyrosine kinases, in patients with advanced colorectal cancer and liver metastases: results from two phase I studies. J Clin Oncol 21:3955–3964

    Article  PubMed  CAS  Google Scholar 

  49. Galbraith SM, Maxwell RJ, Lodge MA, Tozer GM, Wilson J, Taylor NJ, Stirling JJ, Sena L, Padhani AR, Rustin GJ (2003) Combretastatin A4 phosphate has tumor antivascular activity in rat and man as demonstrated by dynamic magnetic resonance imaging. J Clin Oncol. 21:2831–2842

    Article  PubMed  CAS  Google Scholar 

  50. Robinson SP, McIntyre DJ, Checkley D, Tessier JJ, Howe FA, Griffiths JR, Ashton SE, Ryan AJ, Blakey DC, Waterton JC (2003) Tumour dose response to the antivascular agent ZD6126 assessed by magnetic resonance imaging. Br J Cancer. 88:1592–1597

    Article  PubMed  CAS  Google Scholar 

  51. Evelhoch JL, LoRusso PM, He Z, DelProposto Z, Polin L, Corbett TH, Langmuir P, Wheeler C, Stone A, Leadbetter J, Ryan AJ, Blakey DC, Waterton JC. (2004) Magnetic resonance imaging measurements of the response of murine and human tumors to the vascular-targeting agent ZD6126. Clin Cancer Res. 10:3650–3657

    Article  PubMed  CAS  Google Scholar 

  52. Barrett T, Kobayashi H, Brechbiel M, Choyke PL (2006) Macromolecular MRI contrast agents for imaging tumor angiogenesis. Eur J Radiol 60:353–366

    Article  PubMed  Google Scholar 

  53. Martin SJ, Reutelingsperger CP, McGahon AJ, Rader JA, van Schie RC, LaFace DM, Green DR (1995) Early redistribution of plasma membrane phosphatidylserine is a general feature of apoptosis regardless of the initiating stimulus: inhibition by overexpression of Bcl-2 and Abl. J Exp Med 182:1545–1556

    Article  PubMed  CAS  Google Scholar 

  54. Fadok VA, de Cathelineau A, Daleke DL, Henson PM, Bratton DL (2001) Loss of phospholipid asymmetry and surface exposure of phosphatidylserine is required for phagocytosis of apoptotic cells by macrophages and fibroblasts. J Biol Chem 276:1071–1077

    Article  PubMed  CAS  Google Scholar 

  55. Koopman G, Reutelingsperger CPM, Kuijten GAM, Keehnen RMJ, Pals ST, van Oers MHJ (1994) Annexin V for flow cytometric detection of phosphatidylserine expression on B cells undergoing apoptosis. Blood 84:1415–1420

    PubMed  CAS  Google Scholar 

  56. Blankenberg FG, Katsikis PD, Tait JF, Davis RE, Naumovski L, Ohtsuki K, Kopiwoda S, Abrams MJ, Darkes M, Robbins RC, Maecker HT, Strauss HW (1998) In vivo detection and imaging of phosphatidylserin expression during programmed cell death. Proc Natl Acad Sci USA 95:6349–6354

    Article  PubMed  CAS  Google Scholar 

  57. Kietselaer BL, Hofstra L, Dumont EA, Reutelingsperger CP, Heidendal GA (2003) The role of labeled Annexin A5 in imaging of programmed cell death. From animal to clinical imaging. Q J Nucl Med 47:349–361

    PubMed  CAS  Google Scholar 

  58. Schellenberger EA, Bogdanov A Jr, Petrovsky A, Ntziachristos N, Weissleder R, Josephson L (2003) Optical imaging of apoptosis as a biomarker of tumor response to chemotherapy. Neoplasia 5:187–192

    PubMed  CAS  Google Scholar 

  59. Chevenert TL, McKeever PE, Ross BD (1997) Monitoring early response of experimental brain tumors to therapy using diffusion magnetic resonance imaging. Clin Cancer Res 3:1466–1467

    Google Scholar 

  60. Chevenert TL, Stegman LD, Taylor JMG, Robertson PL, Greenberg HS, Rehemtulla A, Ross BD (2000) Diffusion magnetic resonance imaging: an early surrogate marker of therapeutic efficacy in brain tumors. J Natl Cancer Inst 92:2029–2036

    Article  Google Scholar 

  61. Cobben DC, Jager PL, Elsinga PH, Maas B, Suurmeijer AJ, Hoekstra HJ (2004) 3′-18F-fluoro-3′-deoxy-L-thymidine: a new tracer for staging metastatic melanoma? J Nucl Med 44(12):1927–1932

    Google Scholar 

  62. Bonnemain B (1998) Superparamagnetic agents in magnetic resonance imaging: physicochemical characteristics and clinical applications. A review. J Drug Target 6:167–174

    Article  PubMed  CAS  Google Scholar 

  63. Harisinghani MG, Barentsz J, Hahn PF, Deserno WM, Tabatabaei S, van de Kaa CH, de la Rosette J, Weissleder R (2003) Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N Engl J Med 348:2491–2499

    Article  PubMed  Google Scholar 

  64. Deserno WM, Harisinghani MG, Taupitz M, Jager GJ, Witjes JA, Mulders PF, Hulsbergen van de Kaa CA, Kaufmann D, Barentsz JO (2004) Urinary bladder cancer: preoperative nodal staging with ferumoxtran-10-enhanced MR imaging. Radiology 233:449–456

    Article  PubMed  Google Scholar 

  65. Mahmood U, Tung CH, Bogdanov A, Weissleder R (1999) Near-infrared optical imaging of protease activity for tumor detection. Radiology 213:866–870

    PubMed  CAS  Google Scholar 

  66. Tung CH, Mahmood U, Bredow S, Weissleder R (2000) In vivo imaging of proteolytic enzyme activity using a novel molecular reporter. Cancer Res 60:4953–4958

    PubMed  CAS  Google Scholar 

  67. Bremer C, Tung CH, Weissleder R (2001) In vivo molecular target assessment of matrix metalloproteinase inhibition. Nat Med 7:743–748

    Article  PubMed  CAS  Google Scholar 

  68. Overall CM, Kleifeld O (2006) Validating matrix metalloproteinases as drug targets and anti-targets for cancer therapy. Nat Rev Cancer 6:227–239

    Article  PubMed  CAS  Google Scholar 

  69. Kelloff GJ, Krohn KA, Larson SM, Weissleder R, Mankoff DA, Hoffman JM, Link JM, Guyton KZ, Eckelman WC, Scher HI, O’Shaughnessy J, Cheson BD, Sigman CC, Tatum JL, Mills GQ, Sullivan DC, Woodcock J (2005) The progress and promise of molecular imaging probes in oncologic drug development. Clin Cancer Res 11:7967–7985

    Article  PubMed  CAS  Google Scholar 

  70. Kwekkeboom D, Krenning EP, de Jong M (2000) Peptide receptor imaging and therapy. J Nucl Med 41:1704

    PubMed  CAS  Google Scholar 

  71. Becker A, Hessenius C, Licha K, Ebert B, Sukowski U, Semmler W, Wiedenmann B, Grotzinger C (2001) Receptor-targeted optical imaging of tumors with near-infrared fluorescent ligands, Nat Biotechnol 19:327–331

    Article  PubMed  CAS  Google Scholar 

  72. Sledge GW Jr, McGuire WL (1983) Steroid hormone receptors in human breast cancer. Adv Cancer Res 38:61–75

    Article  PubMed  CAS  Google Scholar 

  73. Katzenellenbogen JA, Welch MJ, Dehdashti F (1997) The development of estrogen and progestin radiopharmaceuticals for imaging breast cancer. Anticancer Res 17:1573–1576

    PubMed  CAS  Google Scholar 

  74. Seimbille Y, Rousseau J, Benard F et al (2002) 18F-labeled difluoroestradiols: preparation and preclinical evaluation as estrogen receptor-binding radiopharmaceuticals. Steroids 67:765–775

    Article  PubMed  CAS  Google Scholar 

  75. Kiesewetter DO, Kilbourn MR, Landvatter SW et al (1984) Preparation of four fluorine-18-labeled estrogens and their selective uptakes in target tissues of immature rats. J Nucl Med 25:1212–1221

    PubMed  CAS  Google Scholar 

  76. Mintun MA, Welch MJ, Siegel BA, et al (1988) Breast cancer: PET imaging of estrogen receptors. Radiology 169:45–48

    PubMed  CAS  Google Scholar 

  77. Dehdashti F, Mortimer JE, Siegel BA et al (1995) Positron tomographic assessment of estrogen receptors in breast cancer: comparison with FDG-PET and in vitro receptor assays. J Nucl Med 36:1766–1774

    PubMed  CAS  Google Scholar 

  78. MortimerJE, Dehdashti F, Siegel BA et al (1996) Positron emission tomography with 2-[18F]fluoro-2-deoxy-D-glucose and 16a-[18F]fluoro-17h-estradiol in breast cancer: correlation with estrogen receptor status and response to systemic therapy. Clin Cancer Res 2:933–939

    PubMed  Google Scholar 

  79. Linden HM, Stekhova SA, Link JM, Gralow JR, Livingston RB, Ellis GK, Petra PH, Peterson LM, Schubert EK, Dunnwald LK, Krohn KA, Mankoff DA (2006) Quantitative Fluoroestradiol Positron Emission Tomography Imaging Predicts Response to Endocrine Treatment in Breast Cancer. J Clin Oncol 24:2793–2799

    Article  PubMed  CAS  Google Scholar 

  80. Slamon DJ, Godolphin W, Jones LA, Holt JA, Wong SG, Keith DE, LevinWJ, Stuart SG, Udove J, Ullrich A, Press MF (1989) Studies of theHER-2neu proto-oncogene in human breast and ovarian cancer. Science 244:707–712

    Article  PubMed  CAS  Google Scholar 

  81. DeGiovanna M (1999) Clinical Significance of HER-2neu Overexpression. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  82. Smith-Jones PM, Solit DB,Akhurst T, Afroze F, Rosen N, Larson SM (2004) Imaging the pharmacodynamics of HER2 degradation in response to Hsp90 inhibitors. Nat Biotechnol 22:701–706

    Article  PubMed  CAS  Google Scholar 

  83. Vastag B (2006) HSP-90 inhibitors promise to complement cancer therapies. Nature Biotech 24:1307

    Article  CAS  Google Scholar 

  84. Li DK, Li MJ, Traboulsee A, Zhao G, Riddehough A, Paty D (2006) The use of MRI as an outcome measure in clinical trials. Adv Neurol 98:203–226

    PubMed  Google Scholar 

  85. Miller DH (2004) Biomarkers and surrogate outcomes in neurodegenerative disease: lessons from multiple sclerosis. NeuroRx 1:284–294

    Article  PubMed  Google Scholar 

  86. Therasse P, Eisenhauer EA, Verweij J (2006) RECIST revisited: a review of validation studies on tumour assessment. Eur J Cancer 42:1031–1039

    Article  PubMed  CAS  Google Scholar 

  87. Michaelis LC, Ratain MJ (2006) Measuring response in a post-RECIST world: from black and white to shades of grey. Nat Rev Cancer 6(5):409–414, May

    Article  PubMed  CAS  Google Scholar 

  88. Willett CG, Boucher Y, Duda DG, di Tomaso E, Munn LL, Tong RT, Kozin SV, Petit L, Jain RK, Chung DC, Sahani DV, Kalva SP, Cohen KS, Scadden DT, Fischman AJ, Clark JW, Ryan DP, Zhu AX, Blaszkowsky LS, Shellito PC, Mino-Kenudson M, Lauwers GY (2005) Surrogate markers for antiangiogenic therapy and dose-limiting toxicities for bevacizumab with radiation and chemotherapy: continued experience of a phase I trial in rectal cancer patients. J Clin Oncol 23:8136–8139

    Article  PubMed  Google Scholar 

  89. Nicholson JK, Connelly J, Lindon JC, Holmes E (2002) Metabonomics: a platform for studying drug toxicity and gene function. Nat Rev Drug Discov 1:153–161

    Article  PubMed  CAS  Google Scholar 

  90. Copen WA, Schwamm LH, Gonzalez RG et al (2001) Ischemic stroke: effects of etiology and patient age on the time course of the core apparent diffusion coefficient. Radiology 221:27–34

    Article  PubMed  CAS  Google Scholar 

  91. Heiss WD, Graf R, Grond M, Rudolf J (1998) Pathophysiology of the ischemic penumbra-revision of a concept. Cell Mol Neurobiol 18:621–638

    Article  Google Scholar 

  92. http://www.pharmalive.com

  93. Bergstrom M, Grahnen A, Langstrom B (2003) Positron emission tomography microdosing: a new concept with application in tracer and early clinical drug development. Eur J Clin Pharmacol 59:357–366

    Article  PubMed  Google Scholar 

  94. EMEA (2003) Position paper on non-clinical safety studies to support clinical trials with a single microdose, CPMPSWP259902, January 23

  95. FDA (2006) Guidance for industry, investigators and reviewers: Exploratory IND studies. January

  96. Silverman DHS, Melega WP (2004), Molecular imaging of biological processes with PET: evaluating biological bases of cerebral function. In: Phelps ME (Ed) PET - Molecular imaging and its applications. Springer-Verlag, Hiedelberg, New York pp 509–583

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Rudin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rudin, M. Imaging readouts as biomarkers or surrogate parameters for the assessment of therapeutic interventions. Eur Radiol 17, 2441–2457 (2007). https://doi.org/10.1007/s00330-007-0619-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-007-0619-9

Keywords

Navigation