Skip to main content

Advertisement

Log in

Total-body MR-imaging in oncology

  • Oncology
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Although MRI is an effective modality in oncology, state-of-the-art total-body MRI (TB-MRI) in the past was infeasible in the diagnostic work-up, due to the need for repeated examinations with repositioning and separate surface coils to cover all body parts. To overcome this limitation, either a moving table platform in combination with the body-coil or a special designed rolling table platform with one body phased-array coil have been implemented with promising results for both tumor staging and metastases screening. Since 2004, state-of-the-art TB-MR imaging with high spatial resolution has become feasible using a newly developed 1.5 Tesla TB-MRI system with multiple receiver channels. This review gives an overview based on the recent literature as well as our own experience concerning the possibilities, challenges, and limitations of TB-MRI in oncology, emphasizing both oncological staging and early tumor detection in asymptomatic subjects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Eustace S, Tello R, De CV, Carey J, Wroblicka J, Melhem E, Yucel E (1997) A comparison of whole-body turboSTIR MR imaging and planar 99 mTc-methylene diphosphonate scintigraphy in the examination of patients with suspected skeletal metastases. AJR Am J Roentgenol 169:1655–1661

    PubMed  CAS  Google Scholar 

  2. Eustace S, Walker R, Blake M, Yucel E (1999) Whole-body MR imaging. Practical issues, clinical applications, and future directions. Magn Reson Imaging Clin N Am 7:209–236

    PubMed  CAS  Google Scholar 

  3. Steinborn MM, Heuck AF, Tiling R, Bruegel M, Gauger L, Reiser MF (1999) Whole-body bone marrow MRI in patients with metastatic disease to the skeletal system. J Comput Assist Tomogr 23:123–129

    Article  PubMed  CAS  Google Scholar 

  4. Ruehm S, Goyen M, Quick H, Schleputz M, Schleputz H, Bosk S, Barkhausen J, Ladd M, Debatin J (2000) Whole-body MRA on a rolling table platform (AngioSURF). Rofo Fortschr Geb Rontgenstr Neuen Bildgeb Verfahr 172:670–674

    Article  PubMed  CAS  Google Scholar 

  5. Walker R, Kessar P, Blanchard R, Dimasi M, Harper K, DeCarvalho V, Yucel EK, Patriquin L, Eustace S (2000) Turbo STIR magnetic resonance imaging as a whole-body screening tool for metastases in patients with breast carcinoma: preliminary clinical experience. J Magn Reson Imaging 11:343–350

    Article  PubMed  CAS  Google Scholar 

  6. Barkhausen J, Quick HH, Lauenstein T, Goyen M, Ruehm SG, Laub G, Debatin JF, Ladd ME (2001) Whole-body MR imaging in 30 seconds with real-time true FISP and a continuously rolling table platform: feasibility study. Radiology 220:252–256

    PubMed  CAS  Google Scholar 

  7. Gohde S, Goyen M, Forsting M, Debatin J (2002) Prevention without radiation–a strategy for comprehensive early detection using magnetic resonance tomography. Radiologe 42:622–629

    Article  PubMed  CAS  Google Scholar 

  8. Goyen M, Quick HH, Debatin JF, Ladd ME, Barkhausen J, Herborn CU, Bosk S, Kuehl H, Schleputz M, Ruehm SG (2002) Whole-body three-dimensional MR angiography with a rolling table platform: initial clinical experience. Radiology 224:270–277

    Article  PubMed  Google Scholar 

  9. Lauenstein T, Freudenberg L, Goehde S, Ruehm S, Goyen M, Bosk S, Debatin J, Barkhausen J (2002) Whole-body MRI using a rolling table platform for the detection of bone metastases. Eur Radiol 12:2091–2099

    PubMed  Google Scholar 

  10. Lauenstein TC, Goehde SC, Herborn CU, Treder W, Ruehm SG, Debatin JF, Barkhausen J (2002) Three-dimensional volumetric interpolated breath-hold MR imaging for whole-body tumor staging in less than 15 minutes: a feasibility study. AJR Am J Roentgenol 179:445–449

    PubMed  Google Scholar 

  11. Antoch G, Vogt F, Freudenberg L, Nazaradeh F, Goehde S, Barkhausen J, Dahmen G, Bockisch A, Debatin J, Ruehm S (2003) Whole-body dual-modality PET/CT and whole-body MRI for tumor staging in oncology. JAMA 290:3199–3206

    Article  PubMed  CAS  Google Scholar 

  12. Engelhard K, Hollenbach HP, Wohlfart K, von Imhoff E, Fellner FA (2004) Comparison of whole-body MRI with automatic moving table technique and bone scintigraphy for screening for bone metastases in patients with breast cancer. Eur Radiol 14:99–105 Epub 2003 Jul 2005

    Article  PubMed  CAS  Google Scholar 

  13. Gohde S, Debatin J, Hunold P, Vogt F, Ajaj M, Ruehm S (2004) Whole body MR screening for cardiovascular and malignant disease: feasibility and initial experience in 300 subjects. Radiological Society of North America scientific assembly and annual meeting program. Oak Brook, III: Radiological Society of North America 493

  14. Lauenstein TC, Goehde SC, Herborn CU, Goyen M, Oberhoff C, Debatin JF, Ruehm SG, Barkhausen J (2004) Whole-body MR imaging: evaluation of patients for metastases. Radiology 233:139–148 Epub 2004 Aug 2018

    Article  PubMed  Google Scholar 

  15. Daldrup-Link HE, Franzius C, Link TM, Laukamp D, Sciuk J, Jurgens H, Schober O, Rummeny EJ (2001) Whole-body MR imaging for detection of bone metastases in children and young adults: comparison with skeletal scintigraphy and FDG PET. AJR Am J Roentgenol 177:229–236

    PubMed  CAS  Google Scholar 

  16. Lauenstein TC, Freudenberg LS, Goehde SC, Ruehm SG, Goyen M, Bosk S, Debatin JF, Barkhausen J (2002) Whole-body MRI using a rolling table platform for the detection of bone metastases. Eur Radiol 12:2091–2099 Epub 2002 Mar 2098

    PubMed  Google Scholar 

  17. Antoch G, Vogt FM, Freudenberg LS, Nazaradeh F, Goehde SC, Barkhausen J, Dahmen G, Bockisch A, Debatin JF, Ruehm SG (2003) Whole-body dual-modality PET/CT and whole-body MRI for tumor staging in oncology. Jama 290:3199–3206

    Article  PubMed  CAS  Google Scholar 

  18. Iizuka-Mikami M, Nagai K, Yoshida K, Sugihara T, Suetsugu Y, Mikami M, Tamada T, Imai S, Kajihara Y, Fukunaga M (2004) Detection of bone marrow and extramedullary involvement in patients with non-Hodgkin’s lymphoma by whole-body MRI: comparison with bone and 67Ga scintigraphies. Eur Radiol 14:1074–1081 Epub 2004 Feb 1018

    Article  PubMed  Google Scholar 

  19. Goehde SC, Hunold P, Vogt FM, Ajaj W, Goyen M, Herborn CU, Forsting M, Debatin JF, Ruehm SG (2005) Full-body cardiovascular and tumor MRI for early detection of disease: feasibility and initial experience in 298 subjects. AJR Am J Roentgenol 184:598–611

    PubMed  Google Scholar 

  20. Schlemmer HP, Schafer J, Pfannenberg C, Radny P, Korchidi S, Muller-Horvat C, Nagele T, Tomaschko K, Fenchel M, Claussen CD (2005) Fast whole-body assessment of metastatic disease using a novel magnetic resonance imaging system: initial experiences. Invest Radiol 40:64–71

    Article  PubMed  Google Scholar 

  21. Schmidt GP, Baur-Melnyk A, Herzog P, Schmid R, Tiling R, Schmidt M, Reiser MF, Schoenberg SO (2005) High-resolution whole-body magnetic resonance image tumor staging with the use of parallel imaging versus dual-modality positron emission tomography-computed tomography: experience on a 32-channel system. Invest Radiol 40:743–753

    Article  PubMed  Google Scholar 

  22. Tausig A, Manthey N, Berger F, Sommer H, Pfluger T, Hahn K (2000) Advantages and limitations of whole-body bone marrow MRI using Turbo-STIR sequences in comparison to planar bone scans. Nuklearmedizin 39:174–179

    PubMed  CAS  Google Scholar 

  23. Engelhard K, Hollenbach H, Wohlfart K, Von IE, Fellner F (2004) Comparison of whole-body MRI with automatic moving table technique and bone scintigraphy for screening for bone metastases in patients with breast cancer [In Process Citation]. Eur Radiol 14:99–105

    Article  PubMed  CAS  Google Scholar 

  24. Ghanem N, Kelly T, Altehoefer C, Winterer J, Schafer O, Bley TA, Moser E, Langer M (2004) Whole-body MRI in comparison to skeletal scintigraphy for detection of skeletal metastases in patients with solid tumors. Radiologe 44:864–873

    Article  PubMed  CAS  Google Scholar 

  25. Baur A, Stabler A, Nagel D, Lamerz R, Bartl R, Hiller E, Wendtner C, Bachner F, Reiser M (2002) Magnetic resonance imaging as a supplement for the clinical staging system of Durie and Salmon? Cancer 95:1334–1345

    Article  PubMed  Google Scholar 

  26. Baur A, Stabler A, Arbogast S, Duerr HR, Bartl R, Reiser M (2002) Acute osteoporotic and neoplastic vertebral compression fractures: fluid sign at MR imaging. Radiology 225:730–735

    Article  PubMed  Google Scholar 

  27. Ghanem N, Uhl M, Brink I, Schafer O, Kelly T, Moser E, Langer M (2005) Diagnostic value of MRI in comparison to scintigraphy, PET, MS-CT and PET/CT for the detection of metastases of bone. Eur J Radiol 55:41–55

    Article  PubMed  CAS  Google Scholar 

  28. Nakai T, Okuyama C, Kubota T, Yamada K, Ushijima Y, Taniike K, Suzuki T, Nishimura T (2005) Pitfalls of FDG-PET for the diagnosis of osteoblastic bone metastases in patients with breast cancer. Eur J Nucl Med Mol Imaging 32:1253–1258 Epub 2005 Aug 1220

    Article  PubMed  Google Scholar 

  29. Baur A, Bartl R, Pellengahr C, Baltin V, Reiser M (2004) Neovascularization of bone marrow in patients with diffuse multiple myeloma: a correlative study of magnetic resonance imaging and histopathologic findings. Cancer 101:2599–2604

    Article  PubMed  Google Scholar 

  30. Ghanem N, Altehoefer C, Hogerle S, Schafer O, Winterer J, Moser E, Langer M (2002) Comparative diagnostic value and therapeutic relevance of magnetic resonance imaging and bone marrow scintigraphy in patients with metastatic solid tumors of the axial skeleton. Eur J Radiol 43:256–261

    Article  PubMed  Google Scholar 

  31. Bossuyt PM, Reitsma JB, Bruns DE, Gatsonis CA, Glasziou PP, Irwig LM, Lijmer JG, Moher D, Rennie D, de Vet HC (2003) Towards complete and accurate reporting of studies of diagnostic accuracy: The STARD Initiative. Radiology 226:24–28

    Article  PubMed  Google Scholar 

  32. Muller-Horvat C, Radny P, Eigentler TK, Schafer J, Pfannenberg C, Horger M, Khorchidi S, Nagele T, Garbe C, Claussen CD, Schlemmer HP (2006) Prospective comparison of the impact on treatment decisions of whole-body magnetic resonance imaging and computed tomography in patients with metastatic malignant melanoma. Eur J Cancer 42(3):342–350

    Article  PubMed  Google Scholar 

  33. Mazumdar A, Siegel MJ, Narra V, Luchtman-Jones L (2002) Whole-body fast inversion recovery MR imaging of small cell neoplasms in pediatric patients: a pilot study. AJR Am J Roentgenol 179:1261–1266

    PubMed  Google Scholar 

  34. Mentzel HJ, Kentouche K, Sauner D, Fleischmann C, Vogt S, Gottschild D, Zintl F, Kaiser WA (2004) Comparison of whole-body STIR-MRI and 99 mTc-methylene-diphosphonate scintigraphy in children with suspected multifocal bone lesions. Eur Radiol 14:2297–2302 Epub 2004 Jul 2299

    Article  PubMed  Google Scholar 

  35. Kellenberger CJ, Epelman M, Miller SF, Babyn PS (2004) Fast STIR whole-body MR imaging in children. Radiographics 24:1317–1330

    Article  PubMed  Google Scholar 

  36. Kellenberger CJ, Miller SF, Khan M, Gilday DL, Weitzman S, Babyn PS (2004) Initial experience with FSE STIR whole-body MR imaging for staging lymphoma in children. Eur Radiol 14:1829–1841 Epub 2004 Sep 1829

    Article  PubMed  Google Scholar 

  37. Friedenberg RM (2002) The 21st century: the age of screening. Radiology 223:1–4

    Article  PubMed  Google Scholar 

  38. Boyle P, Ferlay J (2005) Cancer incidence and mortality in Europe, 2004. Ann Oncol 16:481–488 Epub 2005 Feb 2017

    Article  PubMed  CAS  Google Scholar 

  39. Becker N (2002) Screening from the epidemiological viewpoint. Radiologe 42:592–600

    Article  PubMed  CAS  Google Scholar 

  40. Gray J (1997) Evidence based health care: how to make healthy policy and management decisions. Churchill Livingstone, New York, NY

    Google Scholar 

  41. Obuchowski NA, Modic MT (2005) Screening with multisection CT: unmasking the benefit. Radiology 237:401–403

    Article  PubMed  Google Scholar 

  42. Gohagan JK, Marcus PM, Fagerstrom RM, Pinsky PF, Kramer BS, Prorok PC, Ascher S, Bailey W, Brewer B, Church T, Engelhard D, Ford M, Fouad M, Freedman M, Gelmann E, Gierada D, Hocking W, Inampudi S, Irons B, Johnson CC, Jones A, Kucera G, Kvale P, Lappe K, Manor W, Moore A, Nath H, Neff S, Oken M, Plunkett M, Price H, Reding D, Riley T, Schwartz M, Spizarny D, Yoffie R, Zylak C (2005) Final results of the Lung Screening Study, a randomized feasibility study of spiral CT versus chest X-ray screening for lung cancer. Lung Cancer 47:9–15

    Article  PubMed  Google Scholar 

  43. Gohagan J, Marcus P, Fagerstrom R, Pinsky P, Kramer B, Prorok P (2004) Baseline findings of a randomized feasibility trial of lung cancer screening with spiral CT scan vs chest radiograph: the Lung Screening Study of the National Cancer Institute. Chest 126:114–121

    Article  PubMed  Google Scholar 

  44. Garg K, Keith RL, Byers T, Kelly K, Kerzner AL, Lynch DA, Miller YE (2002) Randomized controlled trial with low-dose spiral CT for lung cancer screening: feasibility study and preliminary results. Radiology 225:506–510

    Article  PubMed  Google Scholar 

  45. Gohagan JK, Prorok PC, Hayes RB, Kramer BS (2000) The Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Trial of the National Cancer Institute: history, organization, and status. Control Clin Trials 21:251S–272S

    Article  PubMed  CAS  Google Scholar 

  46. Henschke CI (2005) CT screening for lung cancer: update 2005. Surg Oncol Clin N Am 14:761–776

    Article  PubMed  Google Scholar 

  47. International Early Lung Cancer Action Program and Protocol. Website http://www.IELCAP.org

  48. Swensen SJ, Jett JR, Hartman TE, Midthun DE, Mandrekar SJ, Hillman SL, Sykes AM, Aughenbaugh GL, Bungum AO, Allen KL (2005) CT screening for lung cancer: five-year prospective experience. Radiology 235:259–265 Epub 2005 Feb 2004

    Article  PubMed  Google Scholar 

  49. Feuerstein IM, Jicha DL, Pass HI, Chow CK, Chang R, Ling A, Hill SC, Dwyer AJ, Travis WD, Horowitz ME et al (1992) Pulmonary metastases: MR imaging with surgical correlation–a prospective study. Radiology 182:123–129

    PubMed  CAS  Google Scholar 

  50. Kersjes W, Mayer E, Buchenroth M, Schunk K, Fouda N, Cagil H (1997) Diagnosis of pulmonary metastases with turbo-SE MR imaging. Eur Radiol 7:1190–1194

    Article  PubMed  CAS  Google Scholar 

  51. Lutterbey G, Leutner C, Gieseke J, Rodenburg J, Elevelt A, Sommer T, Schild H (1998) Detection of focal lung lesions with magnetic resonance tomography using T2-weighted ultrashort turbo-spin-echo-sequence in comparison with spiral computerized tomography. Rofo Fortschr Geb Rontgenstr Neuen Bildgeb Verfahr 169:365–369

    Article  PubMed  CAS  Google Scholar 

  52. Biederer J, Schoene A, Freitag S, Reuter M, Heller M (2003) Simulated pulmonary nodules implanted in a dedicated porcine chest phantom: sensitivity of MR imaging for detection. Radiology 227:475–483 Epub 2003 Mar 2020

    Article  PubMed  Google Scholar 

  53. Biederer J, Both M, Graessner J, Liess C, Jakob P, Reuter M, Heller M (2003) Lung morphology: fast MR imaging assessment with a volumetric interpolated breath-hold technique: initial experience with patients. Radiology 226:242–249

    Article  PubMed  Google Scholar 

  54. Schafer JF, Vollmar J, Schick F, Seemann MD, Kamm P, Erdtmann B, Claussen CD (2005) Detection of pulmonary nodules with breath-hold magnetic resonance imaging in comparison with computed tomography. Rofo Fortschr Geb Rontgenstr Neuen Bildgeb Verfahr 177:41–49

    Article  PubMed  CAS  Google Scholar 

  55. Vogt FM, Herborn CU, Hunold P, Lauenstein TC, Schroder T, Debatin JF, Barkhausen J (2004) HASTE MRI versus chest radiography in the detection of pulmonary nodules: comparison with MDCT. AJR Am J Roentgenol 183:71–78

    PubMed  Google Scholar 

  56. Schroeder T, Ruehm SG, Debatin JF, Ladd ME, Barkhausen J, Goehde SC (2005) Detection of pulmonary nodules using a 2D HASTE MR sequence: comparison with MDCT. AJR Am J Roentgenol 185:979–984

    Article  PubMed  Google Scholar 

  57. Chen Q, Stock KW, Prasad PV, Hatabu H (1999) Fast magnetic resonance imaging techniques. Eur J Radiol 29:90–100

    Article  PubMed  CAS  Google Scholar 

  58. Bergin C, Glover G, Pauly J (1991) Lung parenchyma: magnetic susceptibility in MR imaging. Radiology 180:845–848

    PubMed  CAS  Google Scholar 

  59. MacMahon H, Austin JH, Gamsu G, Herold CJ, Jett JR, Naidich DP, Patz EF Jr, Swensen SJ (2005) Guidelines for management of small pulmonary nodules detected on CT scans: a statement from the Fleischner Society. Radiology 237:395–400

    Article  PubMed  Google Scholar 

  60. Brenner DJ (2004) Radiation risks potentially associated with low-dose CT screening of adult smokers for lung cancer. Radiology 231:440–445

    Article  PubMed  Google Scholar 

  61. Ohno Y, Hatabu H, Takenaka D, Adachi S, Kono M, Sugimura K (2002) Solitary pulmonary nodules: potential role of dynamic MR imaging in management initial experience. Radiology 224:503–511

    Article  PubMed  Google Scholar 

  62. Schaefer JF, Vollmar J, Schick F, Vonthein R, Seemann MD, Aebert H, Dierkesmann R, Friedel G, Claussen CD (2004) Solitary pulmonary nodules: dynamic contrast-enhanced MR imaging–perfusion differences in malignant and benign lesions. Radiology 232:544–553 Epub 2004 Jun 2023

    Article  PubMed  Google Scholar 

  63. Kim JH, Kim HJ, Lee KH, Kim KH, Lee HL (2004) Solitary pulmonary nodules: a comparative study evaluated with contrast-enhanced dynamic MR imaging and CT. J Comput Assist Tomogr 28:766–775

    Article  PubMed  Google Scholar 

  64. Goyen M, Goehde S, Herborn C, Hunold P, Vogt F, Gizewski E, Lauenstein T, Ajaj W, Forsting M, Debatin J, Ruehm S (2004) MR-based full-body preventative cardiovascular and tumor imaging: technique and preliminary experience [In Process Citation]. Eur Radiol 14:783–791

    Article  PubMed  Google Scholar 

  65. Harewood GC, Lieberman DA (2004) Colonoscopy practice patterns since introduction of medicare coverage for average-risk screening. Clin Gastroenterol Hepatol 2:72–77

    Article  PubMed  Google Scholar 

  66. Pickhardt P, Choi J, Hwang I, Butler J, Puckett M, Hildebrandt H, Wong R, Nugent P, Mysliwiec P, Schindler W (2003) Computed tomographic virtual colonoscopy to screen for colorectal neoplasia in asymptomatic adults. N Eng J Med 349:2191–2200

    Article  CAS  Google Scholar 

  67. Rex DK, Cutler CS, Lemmel GT, Rahmani EY, Clark DW, Helper DJ, Lehman GA, Mark DG (1997) Colonoscopic miss rates of adenomas determined by back-to-back colonoscopies. Gastroenterology 112:24–28

    Article  PubMed  CAS  Google Scholar 

  68. Sonnenberg A, Delco F, Bauerfeind P (1999) Is virtual colonoscopy a cost-effective option to screen for colorectal cancer? Am J Gastroenterol 94:2268–2274

    Article  PubMed  CAS  Google Scholar 

  69. Zalis ME, Barish MA, Choi JR, Dachman AH, Fenlon HM, Ferrucci JT, Glick SN, Laghi A, Macari M, McFarland EG, Morrin MM, Pickhardt PJ, Soto J, Yee J (2005) CT colonography reporting and data system: a consensus proposal. Radiology 236:3–9

    Article  PubMed  Google Scholar 

  70. Luboldt W, Bauerfeind P, Wildermuth S, Marincek B, Fried M, Debatin J (2000) Colonic masses: detection with MR colonography. Radiology 216:383–388

    PubMed  CAS  Google Scholar 

  71. Saar B, Heverhagen J, Obst T, Berthold L, Kopp I, Klose K, Wagner H (2000) Magnetic resonance colonography and virtual magnetic resonance colonoscopy with the 1.0-T system: a feasibility study. Invest Radiol 35:521–526

    Article  PubMed  CAS  Google Scholar 

  72. Ajaj W, Pelster G, Treichel U, Vogt F, Debatin J, Ruehm S, Lauenstein T (2003) Dark lumen magnetic resonance colonography: comparison with conventional colonoscopy for the detection of colorectal pathology. Gut 52:1738–1743

    Article  PubMed  CAS  Google Scholar 

  73. Steidle G, Schafer J, Schlemmer HP, Claussen CD, Schick F (2004) Two-dimensional parallel acquisition technique in 3D MR colonography. Rofo Fortschr Geb Rontgenstr Neuen Bildgeb Verfahr 176:1100–1105

    Article  PubMed  CAS  Google Scholar 

  74. Iannaccone R, Catalano C, Mangiapane F, Murakami T, Lamazza A, Fiori E, Schillaci A, Marin D, Nofroni I, Hori M, Passariello R (2005) Colorectal polyps: detection with low-dose multi-detector row helical CT colonography versus two sequential colonoscopies. Radiology 237:927–937

    Article  PubMed  Google Scholar 

  75. European, Society of Mastology Website http://www.eusoma.org/Engx/Guidelines

  76. Brown J, Smith RC, Lee CH (2001) Incidental enhancing lesions found on MR imaging of the breast. AJR Am J Roentgenol 176:1249–1254

    PubMed  CAS  Google Scholar 

  77. Gibbs P, Liney GP, Lowry M, Kneeshaw PJ, Turnbull LW (2004) Differentiation of benign and malignant sub-1 cm breast lesions using dynamic contrast enhanced MRI. Breast 13:115–121

    Article  PubMed  CAS  Google Scholar 

  78. Nakashima J, Tanimoto A, Imai Y, Mukai M, Horiguchi Y, Nakagawa K, Oya M, Ohigashi T, Marumo K, Murai M (2004) Endorectal MRI for prediction of tumor site, tumor size, and local extension of prostate cancer. Urology 64:101–105

    Article  PubMed  Google Scholar 

  79. Kurhanewicz J, Swanson MG, Nelson SJ, Vigneron DB (2002) Combined magnetic resonance imaging and spectroscopic imaging approach to molecular imaging of prostate cancer. J Magn Reson Imaging 16:451–463

    Article  PubMed  Google Scholar 

  80. Togashi K (2003) Ovarian cancer: the clinical role of US, CT, and MRI. Eur Radiol 13(4):L87–L104

    Article  PubMed  Google Scholar 

  81. Fink C, Grenacher L, Hansmann H, Dux M, Leipold R, Spielhaupter E, Kauffmann G, Richter G (2001) Prospective study to compare high-resolution computed tomography and magnetic resonance imaging in the detection of pancreatic neoplasms: use of intravenous and oral MR contrast media. Rofo Fortschr Geb Rontgenstr Neuen Bildgeb Verfahr 173:724–730

    Article  PubMed  CAS  Google Scholar 

  82. Dux M, Grenacher L, Lubienski A, Schipp A, Richter G, Hansmann J (2000) Carcinoma of the stomach. Role of imaging for primary diagnosis and preoperative tumor staging. Rofo Fortschr Geb Rontgenstr Neuen Bildgeb Verfahr 172:661–669

    Article  PubMed  CAS  Google Scholar 

  83. Stashuk G (2003) Gastric magnetic resonance study (methods, semiotics). Vestn Rentgenol Radiol 2003:32–41

  84. Filipas D, Spix C, Schulz-Lampel D, Michaelis J, Hohenfellner R, Roth S, Thuroff J (2003) Screening for renal cell carcinoma using ultrasonography: a feasibility study. BJU Int 91:595–599

    Article  PubMed  CAS  Google Scholar 

  85. Kreft BP, Muller-Miny H, Sommer T, Steudel A, Vahlensieck M, Novak D, Muller BG, Schild HH (1997) Diagnostic value of MR imaging in comparison to CT in the detection and differential diagnosis of renal masses: ROC analysis. Eur Radiol 7:542–547

    Article  PubMed  CAS  Google Scholar 

  86. Hara A, Johnson C, MacCarty R, Welch T (2000) Incidental extracolonic findings at CT colonography. Radiology 215:353–357

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank all colleagues working on the whole-body MRI and PET-CT systems in Tübingen. The images in this review article were recorded and prepared with the assistance of Philip Aschoff, Christina Pfannenberg, Christian Plathow, Christian Müller-Horvat, and Susanne Schaefer. The author wishes to thank Jane Gollub for language revision of the manuscript. Professor Claus D. Claussen, Chairman of our Department of Diagnostic Radiology of the University of Tübingen, is acknowledged for his continuous support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juergen F. Schaefer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schaefer, J.F., Schlemmer, HP.W. Total-body MR-imaging in oncology. Eur Radiol 16, 2000–2015 (2006). https://doi.org/10.1007/s00330-006-0199-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-006-0199-0

Keywords

Navigation