Skip to main content

Advertisement

Log in

TH-302, a hypoxia-activated prodrug with broad in vivo preclinical combination therapy efficacy: optimization of dosing regimens and schedules

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Subregional hypoxia is a common feature of tumors and is recognized as a limiting factor for the success of radiotherapy and chemotherapy. TH-302, a hypoxia-activated prodrug selectively targeting hypoxic regions of solid tumors, delivers a cytotoxic warhead to the tumor, while maintaining relatively low systemic toxicity. The antitumor activity, different dosing sequences, and dosing regimens of TH-302 in combination with commonly used conventional chemotherapeutics were investigated in human tumor xenograft models.

Methods

Seven chemotherapeutic drugs (docetaxel, cisplatin, pemetrexed, irinotecan, doxorubicin, gemcitabine, and temozolomide) were tested in combination with TH-302 in eleven human xenograft models, including non-small cell lung cancer (NSCLC), colon cancer, prostate cancer, fibrosarcoma, melanoma, and pancreatic cancer.

Results

The antitumor activity of docetaxel, cisplatin, pemetrexed, irinotecan, doxorubicin, gemcitabine, and temozolomide was increased when combined with TH-302 in nine out of eleven models tested. Administration of TH-302 2–8 h prior to the other chemotherapeutics yielded superior efficacy versus other sequences tested. Simultaneous administration of TH-302 and chemotherapeutics increased toxicity versus schedules with dosing separations. In a dosing optimization study, TH-302 administered daily at 50 mg/kg intraperitoneally for 5 days per week in the H460 NSCLC model showed the optimal response with minimal toxicity.

Conclusions

TH-302 enhances the activity of a wide range of conventional anti-neoplastic agents in a broad panel of in vivo xenograft models. These data highlight in vivo effects of schedule and order of drug administration in regimen efficacy and toxicity and have relevance to the design of human regimens incorporating TH-302.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Batchelder RM, Wilson WR, Hay MP, Denny WA (1996) Oxygen dependence of the cytotoxicity of the enediyne anti-tumour antibiotic esperamicin A1. Br J Cancer Suppl 27:S52–S56

    PubMed  CAS  Google Scholar 

  2. Bhattacharya A, Toth K, Durrani FA, Cao S, Slocum HK, Chintala S, Rustum YM (2008) Hypoxia-specific drug tirapazamine does not abrogate hypoxic tumor cells in combination therapy with irinotecan and methylselenocysteine in well-differentiated human head and neck squamous cell carcinoma a253 xenografts. Neoplasia 10:857–865

    PubMed  CAS  Google Scholar 

  3. Borad M, Infante JR, Mita AC, Chiorean EG, Mendelson DS, Vlahovic G, Wilding G, Langmuir VK, Kroll S (2009) Multi-arm Phase IB study of TH-302 in combination with gemcitabine, docetaxel or pemetrexed. Eur J Cancer Suppl 7:128

    Article  Google Scholar 

  4. Brown JM, Wilson WR (2004) Exploiting tumour hypoxia in cancer treatment. Nat Rev Cancer 4:437–447

    Article  PubMed  CAS  Google Scholar 

  5. Dorie MJ, Brown JM (1993) Tumor-specific, schedule-dependent interaction between tirapazamine (SR 4233) and cisplatin. Cancer Res 53:4633–4636

    PubMed  CAS  Google Scholar 

  6. Dorie MJ, Brown JM (1997) Modification of the antitumor activity of chemotherapeutic drugs by the hypoxic cytotoxic agent tirapazamine. Cancer Chemother Pharmacol 39:361–366

    Article  PubMed  CAS  Google Scholar 

  7. Dorie MJ, Kallman RF (1992) Reoxygenation in the RIF-1 tumor after chemotherapy. Int J Radiat Oncol Biol Phys 24:295–299

    Article  PubMed  CAS  Google Scholar 

  8. Duan JX, Jiao H, Kaizerman J, Stanton T, Evans JW, Lan L, Lorente G, Banica M, Jung D, Wang J, Ma H, Li X, Yang Z, Hoffman RM, Ammons WS, Hart CP, Matteucci M (2008) Potent and highly selective hypoxia-activated achiral phosphoramidate mustards as anticancer drugs. J Med Chem 51:2412–2420

    Article  PubMed  CAS  Google Scholar 

  9. Ganjoo KN, Cranmer LD, Butrynski JE, Rushing D, Adkins D, Okuno SH, Lorente G, Kroll S, Langmuir VK, Chawla SP (2011) A phase I study of the safety and pharmacokinetics of the hypoxia-activated prodrug TH-302 in combination with doxorubicin in patients with advanced soft tissue sarcoma. Oncology 80:50–56

    Article  PubMed  CAS  Google Scholar 

  10. Grau C, Overgaard J (1988) Effect of cancer chemotherapy on the hypoxic fraction of a solid tumor measured using a local tumor control assay. Radiother Oncol 13:301–309

    Article  PubMed  CAS  Google Scholar 

  11. Harris SM, Mistry P, Freathy C, Brown JL, Charlton PA (2005) Antitumour activity of XR5944 in vitro and in vivo in combination with 5-fluorouracil and irinotecan in colon cancer cell lines. Br J Cancer 92:722–728

    Article  PubMed  CAS  Google Scholar 

  12. Hockel M, Vaupel P (2001) Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects. J Natl Cancer Inst 93:266–276

    Article  PubMed  CAS  Google Scholar 

  13. Holden SA, Teicher BA, Ara G, Herman TS, Coleman CN (1992) Enhancement of alkylating agent activity by SR-4233 in the FSaIIC murine fibrosarcoma. J Natl Cancer Inst 84:187–193

    Article  PubMed  CAS  Google Scholar 

  14. Hu J, Handisides DR, Van Valckenborgh E, De Raeve H, Menu E, Vande Broek I, Liu Q, Sun JD, Van Camp B, Hart CP, Vanderkerken K (2011) Targeting the multiple myeloma hypoxic niche with TH-302, a hypoxia-activated prodrug. Blood 116:1524–1527

    Article  Google Scholar 

  15. Huber PE, Bischof M, Jenne J, Heiland S, Peschke P, Saffrich R, Grone HJ, Debus J, Lipson KE, Abdollahi A (2005) Trimodal cancer treatment: beneficial effects of combined antiangiogenesis, radiation, and chemotherapy. Cancer Res 65:3643–3655

    Article  PubMed  CAS  Google Scholar 

  16. Huxham LA, Kyle AH, Baker JH, Nykilchuk LK, Minchinton AI (2004) Microregional effects of gemcitabine in HCT-116 xenografts. Cancer Res 64:6537–6541

    Article  PubMed  CAS  Google Scholar 

  17. Jameson MB, Rischin D, Pegram M, Gutheil J, Patterson AV, Denny WA, Wilson WR (2011) A phase I trial of PR-104, a nitrogen mustard prodrug activated by both hypoxia and aldo-keto reductase 1C3, in patients with solid tumors. Cancer Chemother Pharmacol 65:791–801

    Article  Google Scholar 

  18. Jung D, Lin L, Jiao H, Cai X, Duan JX, Matteucci M (2012) Pharmacokinetics of TH-302: a hypoxically activated prodrug of bromo-isophosphoramide mustard in mice, rats, dogs and monkeys. Cancer Chemother Pharmacol 69:643–654

    Article  PubMed  CAS  Google Scholar 

  19. Kallman RF, Dorie MJ (1986) Tumor oxygenation and reoxygenation during radiation therapy: their importance in predicting tumor response. Int J Radiat Oncol Biol Phys 12:681–685

    Article  PubMed  CAS  Google Scholar 

  20. Keith B, Simon MC (2007) Hypoxia-inducible factors, stem cells, and cancer. Cell 129:465–472

    Article  PubMed  CAS  Google Scholar 

  21. Kim IH, Brown JM (1994) Reoxygenation and rehypoxiation in the SCCVII mouse tumor. Int J Radiat Oncol Biol Phys 29:493–497

    Article  PubMed  CAS  Google Scholar 

  22. Kim JJ, Tannock IF (2005) Repopulation of cancer cells during therapy: an important cause of treatment failure. Nat Rev Cancer 5:516–525

    Article  PubMed  CAS  Google Scholar 

  23. Kraus-Berthier L, Jan M, Guilbaud N, Naze M, Pierre A, Atassi G (2000) Histology and sensitivity to anticancer drugs of two human non-small cell lung carcinomas implanted in the pleural cavity of nude mice. Clin Cancer Res 6:297–304

    PubMed  CAS  Google Scholar 

  24. Li XF, Carlin S, Urano M, Russell J, Ling CC, O'Donoghue JA (2007) Visualization of hypoxia in microscopic tumors by immunofluorescent microscopy. Cancer Res 67:7646–7653

    Article  PubMed  CAS  Google Scholar 

  25. Li XF, O'Donoghue JA (2008) Hypoxia in microscopic tumors. Cancer Lett 264:172–180

    Article  PubMed  CAS  Google Scholar 

  26. Melillo G (2007) Targeting hypoxia cell signaling for cancer therapy. Cancer Metastasis Rev 26:341–352

    Article  PubMed  CAS  Google Scholar 

  27. Meng F, Evans JW, Bhupathi D, Banica M, Lan L, Lorente G, Duan JX, Cai X, Mowday AM, Guise CP, Maroz A, Anderson RF, Patterson AV, Stachelek GC, Glazer PM, Matteucci MD, Hart CP (2011) Molecular and cellular pharmacology of the hypoxia-activated prodrug TH-302. Mol Cancer Ther. doi:10.1158/1535-7163.MCT-11-0634

    Google Scholar 

  28. Minchinton AI, Tannock IF (2006) Drug penetration in solid tumours. Nat Rev Cancer 6:583–592

    Article  PubMed  CAS  Google Scholar 

  29. Papadopoulos KP, Goel S, Beeram M, Wong A, Desai K, Haigentz M, Milian ML, Mani S, Tolcher A, Lalani AS, Sarantopoulos J (2008) A phase 1 open-label, accelerated dose-escalation study of the hypoxia-activated prodrug AQ4N in patients with advanced malignancies. Clin Cancer Res 14:7110–7115

    Article  PubMed  CAS  Google Scholar 

  30. Patterson LH, McKeown SR, Ruparelia K, Double JA, Bibby MC, Cole S, Stratford IJ (2000) Enhancement of chemotherapy and radiotherapy of murine tumours by AQ4N, a bioreductively activated anti-tumour agent. Br J Cancer 82:1984–1990

    Article  PubMed  CAS  Google Scholar 

  31. Primeau AJ, Rendon A, Hedley D, Lilge L, Tannock IF (2005) The distribution of the anticancer drug Doxorubicin in relation to blood vessels in solid tumors. Clin Cancer Res 11:8782–8788

    Article  PubMed  CAS  Google Scholar 

  32. Rischin D, Peters LJ, O'Sullivan B, Giralt J, Fisher R, Yuen K, Trotti A, Bernier J, Bourhis J, Ringash J, Henke M, Kenny L (2010) Tirapazamine, cisplatin, and radiation versus cisplatin and radiation for advanced squamous cell carcinoma of the head and neck (TROG 02.02, HeadSTART): a phase III trial of the Trans-Tasman Radiation Oncology Group. J Clin Oncol 28:2989–2995

    Article  PubMed  CAS  Google Scholar 

  33. Saucier JM, Yu J, Gaikwad A, Coleman RL, Wolf JK, Smith JA (2007) Determination of the optimal combination chemotherapy regimen for treatment of platinum-resistant ovarian cancer in nude mouse model. J Oncol Pharm Pract 13:39–45

    Article  PubMed  CAS  Google Scholar 

  34. Simonsen TG, Gaustad JV, Rofstad EK (2010) Development of hypoxia in a preclinical model of tumor micrometastases. Int J Radiat Oncol Biol Phys 76:879–888

    Article  PubMed  Google Scholar 

  35. Sun JD, Liu Q, Wang J, Ahluwalia D, Ferraro D, Wang Y, Duan JX, Ammons WS, Curd JG, Matteucci MD, Hart CP (2012) Selective tumor hypoxia targeting by hypoxia-activated prodrug TH-302 inhibits tumor growth in preclinical models of cancer. Clin Cancer Res 18:758–770

    Article  PubMed  CAS  Google Scholar 

  36. Tannock I (1982) Response of aerobic and hypoxic cells in a solid tumor to adriamycin and cyclophosphamide and interaction of the drugs with radiation. Cancer Res 42:4921–4926

    PubMed  CAS  Google Scholar 

  37. Teicher BA, Lazo JS, Sartorelli AC (1981) Classification of antineoplastic agents by their selective toxicities toward oxygenated and hypoxic tumor cells. Cancer Res 41:73–81

    PubMed  CAS  Google Scholar 

  38. Tredan O, Garbens AB, Lalani AS, Tannock IF (2009) The hypoxia-activated ProDrug AQ4N penetrates deeply in tumor tissues and complements the limited distribution of mitoxantrone. Cancer Res 69:940–947

    Article  PubMed  CAS  Google Scholar 

  39. Tsunemoto H, Ando K, Koike S, Urano M (1994) Repopulation of tumour cells following irradiation with X-rays or low energy neutrons. Int J Radiat Biol 65:255–261

    Article  PubMed  CAS  Google Scholar 

  40. Vaupel P, Mayer A (2007) Hypoxia in cancer: significance and impact on clinical outcome. Cancer Metastasis Rev 26:225–239

    Article  PubMed  CAS  Google Scholar 

  41. Weiss GJ, Infante JR, Chiorean EG, Borad MJ, Bendell JC, Molina JR, Tibes R, Ramanathan RK, Lewandowski K, Jones SF, Lacouture ME, Langmuir VK, Lee H, Kroll S, Burris HA 3rd Phase 1 study of the safety, tolerability, and pharmacokinetics of TH-302, a hypoxia-activated prodrug, in patients with advanced solid malignancies. Clin Cancer Res 17:2997–3004

  42. Williamson SK, Crowley JJ, Lara PN, McCoy J, Lau DH, Tucker RW, Mills GM, Gandara DR (2005) Phase III trial of paclitaxel plus carboplatin with or without tirapazamine in advanced non-small-cell lung cancer: Southwest Oncology Group Trial S0003. J Clin Oncol 23:9097–9104

    Article  PubMed  CAS  Google Scholar 

  43. Wilson WR, Hay MP Targeting hypoxia in cancer therapy. Nat Rev Cancer 11:393-410

  44. Yamada H, Uchida N, Maekawa R, Yoshioka T (2001) Sequence-dependent antitumor efficacy of combination chemotherapy with nedaplatin, a newly developed platinum, and paclitaxel. Cancer Lett 172:17–25

    Article  PubMed  CAS  Google Scholar 

  45. Yokoi K, Fidler IJ (2004) Hypoxia increases resistance of human pancreatic cancer cells to apoptosis induced by gemcitabine. Clin Cancer Res 10:2299–2306

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

AFB acknowledges support from Grants R01CA125627, P30CA023074, and P50CA95060 for work carried out at the Arizona Cancer Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles P. Hart.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 447 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Q., Sun, J.D., Wang, J. et al. TH-302, a hypoxia-activated prodrug with broad in vivo preclinical combination therapy efficacy: optimization of dosing regimens and schedules. Cancer Chemother Pharmacol 69, 1487–1498 (2012). https://doi.org/10.1007/s00280-012-1852-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-012-1852-8

Keywords

Navigation