Skip to main content

Advertisement

Log in

Non-invasive MRI tumor imaging and synergistic anticancer effect of HSP90 inhibitor and glycolysis inhibitor in RIP1-Tag2 transgenic pancreatic tumor model

Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purposes

To utilize non-invasive MRI imaging for real-time testing the synergistic effects of HSP90 inhibitor and glycolysis inhibitor for pancreatic cancer therapy in spontaneous pancreatic cancer mouse model.

Material and methods

Transgenic RIP1-Tag2 spontaneous pancreatic cancer mice were treated with geldanamycin (GA, 5 mg/kg) and /or 3-Bromo-pyruvate (3-BrPA, 5 mg/kg) from 8 to 12 weeks of age. Non-invasive MRI imaging measured and calculated the total tumor mass and volumes in real-time and compared to ex vivo tumors size. Serum VEGF levels were measured by ELISA. HSP 90 client protein levels (AKT and VEGF) were measured by western blots.

Results

RIP-Tag2 transgenic mice developed pancreatic tumors from 8 to 12 weeks of age. Non-invasive MRI imaging detected primary tumors in pancreas and metastasis in intestine and mesenterium with minimal resolution of 20 mm3. VEGF, AKT, hexokinase II, and Hsp90 were expressed in the pancreatic cancer tissues from RIP1-Tag2 transgenic mice. Combination of GA and 3-BrPA decreased serum VEGF levels by 70% compared to control group. Non-invasive MRI imaging showed that combination of GA and 3-BrPA inhibited pancreatic tumor and metastasis by more than 90% and significantly prolonged life span of RIP1-Tag2 transgenic pancreatic cancer mice. The synergistic effect of geldanamycin and 3-BrPA is through inhibition of two different pathways on HSP90 for its client protein degradation and on HK II for energy metabolism.

Conclusion

Non-invasive MRI imaging revealed synergistic effects of Hsp90 inhibitors and glycolysis inhibitors, which may provide a new therapeutic option for pancreatic cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Parker SL, Davis KJ, Wingo PA, Ries LA, Heath CW Jr (1998) Cancer statistics by race and ethnicity. CA Cancer J Clin 48:31–48

    Article  PubMed  CAS  Google Scholar 

  2. Li D, Xie K, Wolff R, Abbruzzese JL (2004) Pancreatic cancer. Lancet 363:1049–1057

    Article  PubMed  CAS  Google Scholar 

  3. Spratlin J, Sangha R, Glubrecht D, Dabbagh L, Young JD, Dumontet C, Cass C, Lai R, Mackey JR (2004) The absence of human equilibrative nucleoside transporter 1 is associated with reduced survival in patients with gemcitabine-treated pancreas adenocarcinoma. Clin Cancer Res 10:6956–6961

    Article  PubMed  CAS  Google Scholar 

  4. Laheru D, Biedrzycki B, Jaffee EM (2001) Immunologic approaches to the management of pancreatic cancer. Cancer J 7:324–337

    PubMed  CAS  Google Scholar 

  5. Pardoll D, Allison J (2004) Cancer immunotherapy: breaking the barriers to harvest the crop. Nat Med 10:887–892

    Article  PubMed  CAS  Google Scholar 

  6. Buchler P, Reber HA, Buchler M, Shrinkante S, Buchler MW, Friess H, Semenza GL, Hines OJ (2003) Hypoxia-inducible factor 1 regulates vascular endothelial growth factor expression in human pancreatic cancer. Pancreas 26:56–64

    Article  PubMed  CAS  Google Scholar 

  7. Ghaneh P, Kawesha A, Evans JD, Neoptolemos JP (2002) Molecular prognostic markers in pancreatic cancer. J Hepatobiliary Pancreat Surg 9:1–11

    Article  PubMed  Google Scholar 

  8. Warburg O (1956) On the origin of cancer cells. Science 123:309–314

    Article  PubMed  CAS  Google Scholar 

  9. Gatenby RA (1995) The potential role of transformation-induced metabolic changes in tumor-host interaction. Cancer Res 55:4151–4156

    PubMed  CAS  Google Scholar 

  10. Dang CV, Semenza GL (1999) Oncogenic alterations of metabolism. Trends Biochem Sci 24:68–72

    Article  PubMed  CAS  Google Scholar 

  11. Seagroves TN, Ryan HE, Lu H, Wouters BG, Knapp M, Thibault P, Laderoute K, Johnson RS (2001) Transcription factor HIF-1 is a necessary mediator of the pasteur effect in mammalian cells. Mol Cell Biol 21:3436–3444

    Article  PubMed  CAS  Google Scholar 

  12. Chen C, Pore N, Behrooz A, Ismail-Beigi F, Maity A (2001) Regulation of glut1 mRNA by hypoxia-inducible factor-1. Interaction between H-ras and hypoxia. J Biol Chem 276:9519–9525

    Article  PubMed  CAS  Google Scholar 

  13. Harris AL (2002) Hypoxia—a key regulatory factor in tumour growth. Nat Rev Cancer 2:38–47

    Article  PubMed  CAS  Google Scholar 

  14. Weber G (1977) Enzymology of cancer cells (second of two parts). N Engl J Med 296:541–551

    Article  PubMed  CAS  Google Scholar 

  15. Weber G (1977) Enzymology of cancer cells (first of two parts). N Engl J Med 296:486–492

    Article  PubMed  CAS  Google Scholar 

  16. Younes M, Brown RW, Stephenson M, Gondo M, Cagle PT (1997) Overexpression of Glut1 and Glut3 in stage I nonsmall cell lung carcinoma is associated with poor survival. Cancer 80:1046–1051

    Article  PubMed  CAS  Google Scholar 

  17. Younes M, Brown RW, Mody DR, Fernandez L, Laucirica R (1995) GLUT1 expression in human breast carcinoma: correlation with known prognostic markers. Anticancer Res 15:2895–2898

    PubMed  CAS  Google Scholar 

  18. Gambhir SS (2002) Molecular imaging of cancer with positron emission tomography. Nat Rev Cancer 2:683–693

    Article  PubMed  CAS  Google Scholar 

  19. Haberkorn U, Morr I, Oberdorfer F, Bellemann ME, Blatter J, Altmann A, Kahn B, van Kaick G (1994) Fluorodeoxyglucose uptake in vitro: aspects of method and effects of treatment with gemcitabine. J Nucl Med 35:1842–1850

    PubMed  CAS  Google Scholar 

  20. Haberkorn U, Ziegler SI, Oberdorfer F, Trojan H, Haag D, Peschke P, Berger MR, Altmann A, van Kaick G (1994) FDG uptake, tumor proliferation and expression of glycolysis associated genes in animal tumor models. Nucl Med Biol 21:827–834

    Article  PubMed  CAS  Google Scholar 

  21. Burt BM, Humm JL, Kooby DA, Squire OD, Mastorides S, Larson SM, Fong Y (2001) Using positron emission tomography with [(18)F]FDG to predict tumor behavior in experimental colorectal cancer. Neoplasia 3:189–195

    Article  PubMed  CAS  Google Scholar 

  22. Waki A, Fujibayashi Y, Magata Y, Yokoyama A, Sadato N, Tsuchida T, Ishii Y, Yonekura Y (1998) Glucose transporter protein-independent tumor cell accumulation of fluorine-18-AFDG, a lipophilic fluorine-18-FDG analog. J Nucl Med 39:245–250

    PubMed  CAS  Google Scholar 

  23. Younes M, Lechago LV, Somoano JR, Mosharaf M, Lechago J (1996) Wide expression of the human erythrocyte glucose transporter Glut1 in human cancers. Cancer Res 56:1164–1167

    PubMed  CAS  Google Scholar 

  24. Hanahan D (1985) Heritable formation of pancreatic beta-cell tumours in transgenic mice expressing recombinant insulin/simian virus 40 oncogenes. Nature 315:115–122

    Article  PubMed  CAS  Google Scholar 

  25. Folkman J, Watson K, Ingber D, Hanahan D (1989) Induction of angiogenesis during the transition from hyperplasia to neoplasia. Nature 339:58–61

    Article  PubMed  CAS  Google Scholar 

  26. Bergers G, Javaherian K, Lo KM, Folkman J, Hanahan D (1999) Effects of angiogenesis inhibitors on multistage carcinogenesis in mice. Science 284:808–812

    Article  PubMed  CAS  Google Scholar 

  27. Schaffhauser B, Veikkola T, Strittmatter K, Antoniadis H, Alitalo K, Christofori G (2006) Moderate antiangiogenic activity by local, transgenic expression of endostatin in Rip1Tag2 transgenic mice. J Leukoc Biol 80:669–676

    Article  PubMed  CAS  Google Scholar 

  28. Alfke H, Kohle S, Maurer E, Celik I, Rascher-Friesenhausen R, Behrens S, Heverhagen JT, Peitgen HO, Klose KJ (2004) Analysis of mice tumor models using dynamic MRI data and a dedicated software platform*. Rofo 176:1226–1231

    PubMed  CAS  Google Scholar 

  29. Hellwig D, Menges M, Schneider G, Moellers MO, Romeike BF, Menger MD, Kirsch CM, Samnick S (2005) Radioiodinated phenylalanine derivatives to image pancreatic cancer: a comparative study with [18F]fluoro-2-deoxy-D-glucose in human pancreatic carcinoma xenografts and in inflammation models. Nucl Med Biol 32:137–145

    Article  PubMed  CAS  Google Scholar 

  30. Medarova Z, Pham W, Kim Y, Dai G, Moore A (2006) In vivo imaging of tumor response to therapy using a dual-modality imaging strategy. Int J Cancer 118:2796–2802

    Article  PubMed  CAS  Google Scholar 

  31. Bouvet M, Spernyak J, Katz MH, Mazurchuk RV, Takimoto S, Bernacki R, Rustum YM, Moossa AR, Hoffman RM (2005) High correlation of whole-body red fluorescent protein imaging and magnetic resonance imaging on an orthotopic model of pancreatic cancer. Cancer Res 65:9829–9833

    Article  PubMed  CAS  Google Scholar 

  32. Wild D, Behe M, Wicki A, Storch D, Waser B, Gotthardt M, Keil B, Christofori G, Reubi JC, Macke HR (2006) [Lys40(Ahx-DTPA-111In)NH2]exendin-4, a very promising ligand for glucagon-like peptide-1 (GLP-1) receptor targeting. J Nucl Med 47:2025–2033

    PubMed  CAS  Google Scholar 

  33. Speiser DE, Miranda R, Zakarian A, Bachmann MF, McKall-Faienza K, Odermatt B, Hanahan D, Zinkernagel RM, Ohashi PS (1997) Self antigens expressed by solid tumors Do not efficiently stimulate naive or activated T cells: implications for immunotherapy. J Exp Med 186:645–653

    Article  PubMed  CAS  Google Scholar 

  34. De Lott LB, Morrison C, Suster S, Cohn DE, Frankel WL (2005) CDX2 is a useful marker of intestinal-type differentiation: a tissue microarray-based study of 629 tumors from various sites. Arch Pathol Lab Med 129:1100–1105

    PubMed  Google Scholar 

  35. Nozawa H, Chiu C, Hanahan D (2006) Infiltrating neutrophils mediate the initial angiogenic switch in a mouse model of multistage carcinogenesis. Proc Natl Acad Sci U S A 103:12493–12498

    Article  PubMed  CAS  Google Scholar 

  36. Inoue M, Hager JH, Ferrara N, Gerber HP, Hanahan D (2002) VEGF-A has a critical, nonredundant role in angiogenic switching and pancreatic beta cell carcinogenesis. Cancer Cell 1:193–202

    Article  PubMed  CAS  Google Scholar 

  37. Berlin JD, Catalano P, Thomas JP, Kugler JW, Haller DG, Benson AB 3rd (2002) Phase III study of gemcitabine in combination with fluorouracil versus gemcitabine alone in patients with advanced pancreatic carcinoma: Eastern Cooperative Oncology Group Trial E2297. J Clin Oncol 20:3270–3275

    Article  PubMed  CAS  Google Scholar 

  38. Colucci G, Giuliani F, Gebbia V, Biglietto M, Rabitti P, Uomo G, Cigolari S, Testa A, Maiello E, Lopez M (2002) Gemcitabine alone or with cisplatin for the treatment of patients with locally advanced and/or metastatic pancreatic carcinoma: a prospective, randomized phase III study of the Gruppo Oncologia dell’Italia Meridionale. Cancer 94:902–910

    Article  PubMed  CAS  Google Scholar 

  39. Kindler HL, Friberg G, Singh DA, Locker G, Nattam S, Kozloff M, Taber DA, Karrison T, Dachman A, Stadler WM, Vokes EE (2005) Phase II trial of bevacizumab plus gemcitabine in patients with advanced pancreatic cancer. J Clin Oncol 23:8033–8040

    Article  PubMed  CAS  Google Scholar 

  40. Shibaji T, Nagao M, Ikeda N, Kanehiro H, Hisanaga M, Ko S, Fukumoto A, Nakajima Y (2003) Prognostic significance of HIF-1 alpha overexpression in human pancreatic cancer. Anticancer Res 23:4721–4727

    PubMed  CAS  Google Scholar 

  41. Ogata M, Naito Z, Tanaka S, Moriyama Y, Asano G (2000) Overexpression and localization of heat shock proteins mRNA in pancreatic carcinoma. J Nippon Med Sch 67:177–185

    Article  PubMed  CAS  Google Scholar 

  42. Baker CH, Solorzano CC, Fidler IJ (2002) Blockade of vascular endothelial growth factor receptor and epidermal growth factor receptor signaling for therapy of metastatic human pancreatic cancer. Cancer Res 62:1996–2003

    PubMed  CAS  Google Scholar 

  43. Bruns CJ, Solorzano CC, Harbison MT, Ozawa S, Tsan R, Fan D, Abbruzzese J, Traxler P, Buchdunger E, Radinsky R, Fidler IJ (2000) Blockade of the epidermal growth factor receptor signaling by a novel tyrosine kinase inhibitor leads to apoptosis of endothelial cells and therapy of human pancreatic carcinoma. Cancer Res 60:2926–2935

    PubMed  CAS  Google Scholar 

  44. Yamanaka Y, Friess H, Kobrin MS, Buchler M, Beger HG, Korc M (1993) Coexpression of epidermal growth factor receptor and ligands in human pancreatic cancer is associated with enhanced tumor aggressiveness. Anticancer Res 13:565–569

    PubMed  CAS  Google Scholar 

  45. Sanderson S, Valenti M, Gowan S, Patterson L, Ahmad Z, Workman P, Eccles SA (2006) Benzoquinone ansamycin heat shock protein 90 inhibitors modulate multiple functions required for tumor angiogenesis. Mol Cancer Ther 5:522–532

    Article  PubMed  CAS  Google Scholar 

  46. Sebastian S, Kenkare UW (1998) Expression of two type II-like tumor hexokinase RNA transcripts in cancer cell lines. Tumor Biol 19:253–260

    Article  CAS  Google Scholar 

  47. Rasschaert J, Malaisse WJ (1995) Activity of cytosolic and mitochondrial enzymes participating in nutrient catabolism of normal and tumoral islet cells. Int J Biochem Cell Biol 27:195–200

    Article  PubMed  CAS  Google Scholar 

  48. Therasse P, Arbuck SG, Eisenhauer EA, Wanders J, Kaplan RS, Rubinstein L, Verweij J, Van Glabbeke M, van Oosterom AT, Christian MC, Gwyther SG (2000) New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst 92:205–216

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duxin Sun.

Additional information

Xianhua Cao and Guang Jia have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, X., Jia, G., Zhang, T. et al. Non-invasive MRI tumor imaging and synergistic anticancer effect of HSP90 inhibitor and glycolysis inhibitor in RIP1-Tag2 transgenic pancreatic tumor model. Cancer Chemother Pharmacol 62, 985–994 (2008). https://doi.org/10.1007/s00280-008-0688-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-008-0688-8

Keywords

Navigation