Skip to main content

Advertisement

Log in

Folate receptor specific anti-tumor activity of folate–mitomycin conjugates

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose: Folate receptor (FR) targeted drug conjugates were prepared by covalently attaching the vitamin folate, to the potent anticancer drug, mitomycin C (MMC). One such conjugate, called EC72, was synthesized with an intramolecular disulfide bond, and it was found to exhibit efficacious anti-tumor activity against FR-expressing M109 tumors in a manner that yielded no gross or microscopic toxicity, even to FR-positive kidneys. Methods: EC72’s specificity was demonstrated by two methods: (1) blocking EC72’s activity with an excess of co-administered folic acid (FA) in M109 tumor bearing mice and (2) the absence of therapeutic activity in mice bearing FR-negative tumors. The importance of having a cleavable bond in the conjugate was also exemplified, since EC110 (a folate–MMC conjugate constructed with a more resilient amide bond) failed to produce anti-M109 tumor activity. EC72’s therapeutic potential was found to decrease with respect to the increasing size of subcutaneous tumor. However, a combination therapy with paclitaxel reproducibly improved the anti-tumor efficacy relative to either agent alone at well tolerated dose levels and with no apparent increase in toxicity. A more advanced folate–MMC conjugate was also synthesized in an effort to improve activity. Thus, EC118, a molecule constructed with both a reducible disulfide bond and an acid-labile hydrazone bond in the linker region, was tested and found to produce a significantly greater number of tumor regressions of more established M109 tumors than that achieved with EC72. Conclusion: Overall, these data indicate that folate-targeted drug therapy alone, or in combination with paclitaxel, may be a novel and effective clinical approach towards treating FR-positive cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. 4T1 cells are sensitive to MMC.

References

  1. Damle NK, Frost P (2003) Antibody-targeted chemotherapy with immunoconjugates of calicheamicin. Curr Opin Pharmacol 3(4):386–390

    Article  PubMed  CAS  Google Scholar 

  2. Giles F, Estey E, O’Brien S (2003) Gemtuzumab ozogamicin in the treatment of acute myeloid leukemia. Cancer 98(10):2095–2104

    Article  PubMed  CAS  Google Scholar 

  3. Trail PA, Willner D, Lasch SJ, Henderson AJ, Hofstead S, Casazza AM, Firestone RA, Hellstrom I, Hellstrom KE (1993) Cure of xenografted human carcinomas by BR96-doxorubicin immunoconjugates. Science 261(5118):212–215

    Article  PubMed  CAS  Google Scholar 

  4. Tolcher AW, Sugarman S, Gelmon KA, Cohen R, Saleh M, Isaacs C, Young L, Healey D, Onetto N, Slichenmyer W (1999) Randomized phase II study of BR96-doxorubicin conjugate in patients with metastatic breast cancer. J Clin Oncol 17(2):478–484

    PubMed  CAS  Google Scholar 

  5. Liu C, Tadayoni BM, Bourret LA, Mattocks KM, Derr SM, Widdison WC, Kedersha NL, Ariniello PD, Goldmacher VS, Lambert JM, Blattler WA, Chari RV (1996) Eradication of large colon tumor xenografts by targeted delivery of maytansinoids. Proc Natl Acad Sci USA 93(16):8618–8623

    Article  PubMed  CAS  Google Scholar 

  6. Tolcher AW, Ochoa L, Hammond LA, Patnaik A, Edwards T, Takimoto C, Smith L, de Bono J, Schwartz G, Mays T, Jonak ZL, Johnson R et al (2003) Cantuzumab mertansine, a maytansinoid immunoconjugate directed to the CanAg antigen: a phase I, pharmacokinetic, and biologic correlative study. J Clin Oncol 21(2):211–222

    Article  PubMed  CAS  Google Scholar 

  7. Tassone P, Gozzini A, Goldmacher V, Shammas MA, Whiteman KR, Carrasco DR, Li C, Allam CK, Venuta S, Anderson KC, Munshi NC. (2004) In vitro and in vivo activity of the maytansinoid immunoconjugate huN901-N2′-deacetyl-N2′-(3-mercapto-1-oxopropyl)-maytansine against CD56+ multiple myeloma cells. Cancer Res 64(13):4629–4636

    Article  PubMed  CAS  Google Scholar 

  8. Chari RV, Jackel KA, Bourret LA, Derr SM, Tadayoni BM, Mattocks KM, Shah SA, Liu C, Blattler WA, Goldmacher VS (1995) Enhancement of the selectivity and antitumor efficacy of a CC-1065 analogue through immunoconjugate formation. Cancer Res 55(18):4079–4084

    PubMed  CAS  Google Scholar 

  9. Jain RK (2001) Delivery of molecular and cellular medicine to solid tumors. Adv Drug Deliv Rev 46(1–3):149–168

    Article  PubMed  CAS  Google Scholar 

  10. Reddy JA, Allagadda VM, Leamon CP (2005) Targeting therapeutic and imaging agents to folate receptor positive tumors. Curr Pharm Biotechnol 6(2):131–150

    Article  PubMed  CAS  Google Scholar 

  11. Reddy JA, Low PS (1998) Folate-mediated targeting of therapeutic and imaging agents to cancers. Crit Rev Ther Drug Carrier Syst 15(6):587–627

    PubMed  CAS  Google Scholar 

  12. Leamon CP, Low PS (2001) Folate-mediated targeting: from diagnostics to drug and gene delivery. Drug Discov Today 6(1):44–51

    Article  PubMed  CAS  Google Scholar 

  13. Weitman SD, Lark RH, Coney LR, Fort DW, Frasca V, Zurawski VR Jr, Kamen BA (1992) Distribution of the folate receptor GP38 in normal and malignant cell lines and tissues. Cancer Res 52(12):3396–3401

    PubMed  CAS  Google Scholar 

  14. Ross JF, Chaudhuri PK, Ratnam M (1994) Differential regulation of folate receptor isoforms in normal and malignant tissues in vivo and in established cell lines. Physiologic and clinical implications. Cancer 73(9):2432–2443

    Article  PubMed  CAS  Google Scholar 

  15. Toffoli G, Cernigoi C, Russo A, Gallo A, Bagnoli M, Boiocchi M (1997) Overexpression of folate binding protein in ovarian cancers. Int J Cancer 74(2):193–198

    Article  PubMed  CAS  Google Scholar 

  16. Leamon CP, Low PS (1991) Delivery of macromolecules into living cells: a method that exploits folate receptor endocytosis. Proc Natl Acad Sci USA 88(13):5572–5576

    Article  PubMed  CAS  Google Scholar 

  17. Leamon CP, Low PS (1993) Membrane folate-binding proteins are responsible for folate–protein conjugate endocytosis into cultured cells. Biochem J 291(Pt 3):855–860

    PubMed  CAS  Google Scholar 

  18. Rund LA, Cho BK, Manning TC, Holler PD, Roy EJ, Kranz DM (1999) Bispecific agents target endogenous murine T cells against human tumor xenografts. Int J Cancer 83(1):141–149

    Article  PubMed  CAS  Google Scholar 

  19. Lu Y, Low PS (2002) Folate targeting of haptens to cancer cell surfaces mediates immunotherapy of syngeneic murine tumors. Cancer Immunol Immunother 51(3):153–162

    Article  PubMed  CAS  Google Scholar 

  20. Lee RJ, Low PS (1994) Delivery of liposomes into cultured KB cells via folate receptor-mediated endocytosis. J Biol Chem 269(5):3198–3204

    PubMed  CAS  Google Scholar 

  21. Reddy JA, Abburi C, Hofland H, Howard SJ, Vlahov I, Wils P, Leamon CP (2002) Folate-targeted, cationic liposome-mediated gene transfer into disseminated peritoneal tumors. Gene Ther 9(22):1542–1550

    Article  PubMed  CAS  Google Scholar 

  22. Reddy JA, Xu LC, Parker N, Vetzel M, Leamon CP (2004) Preclinical evaluation of (99m)Tc-EC20 for imaging folate receptor-positive tumors. J Nucl Med 45(5):857–866

    PubMed  CAS  Google Scholar 

  23. Ladino CA, Chari RV, Bourret LA, Kedersha NL, Goldmacher VS (1997) Folate-maytansinoids: target-selective drugs of low molecular weight. Int J Cancer 73(6):859–864

    Article  PubMed  CAS  Google Scholar 

  24. Leamon CP, Reddy JA, Vlahov IR, Vetzel M, Westrick E (Submitted) Biological evaluation of EC72: A new folate-targeted chemotherapeutic

  25. Bradner WT (2001) Mitomycin C: a clinical update. Cancer Treat Rev 27(1):35–50

    Article  PubMed  CAS  Google Scholar 

  26. Verweij J, Pinedo HM (1990) Mitomycin C: mechanism of action, usefulness and limitations. Anticancer Drugs 1(1):5–13

    Article  PubMed  CAS  Google Scholar 

  27. Mathias CJ, Wang S, Lee RJ, Waters DJ, Low PS, Green MA (1996) Tumor-selective radiopharmaceutical targeting via receptor-mediated endocytosis of gallium-67-deferoxamine-folate. J Nucl Med 37(6):1003–1008

    PubMed  CAS  Google Scholar 

  28. Baker LH, Izbicki RM, Vaitkevicius VK (1976) Phase II study of profiromycin vs mitomycin-C utilizing acute intermittent schedules. Med Pediatr Oncol 2(2):207–213

    Article  PubMed  CAS  Google Scholar 

  29. Ihnat MA, Lariviere JP, Warren AJ, La Ronde N, Blaxall JR, Pierre KM, Turpie BW, Hamilton JW (1997) Suppression of P-glycoprotein expression and multidrug resistance by DNA cross-linking agents. Clin Cancer Res 3(8):1339–1346

    PubMed  CAS  Google Scholar 

  30. Maitra R, Halpin PA, Karlson KH, Page RL, Paik DY, Leavitt MO, Moyer BD, Stanton BA, Hamilton JW (2001) Differential effects of mitomycin C and doxorubicin on P-glycoprotein expression. Biochem J 355(Pt 3):617–624

    PubMed  CAS  Google Scholar 

  31. Steinman RM, Mellman IS, Muller WA, Cohn ZA (1983) Endocytosis and the recycling of plasma membrane. J Cell Biol 96(1):1–27

    Article  PubMed  CAS  Google Scholar 

  32. Rose WC (1992) Taxol: a review of its preclinical in vivo antitumor activity. Anticancer Drugs 3(4):311–321

    Article  PubMed  CAS  Google Scholar 

  33. Goldspiel BR (1997) Clinical overview of the taxanes. Pharmacotherapy 17(5 Pt 2):110S–125S

    PubMed  CAS  Google Scholar 

  34. Horwitz SB, Lothstein L, Manfredi JJ, Mellado W, Parness J, Roy SN, Schiff PB, Sorbara L, Zeheb R (1986) Taxol: mechanisms of action and resistance. Ann N Y Acad Sci 466:733–744

    Article  PubMed  CAS  Google Scholar 

  35. Horwitz SB (1994) Taxol (paclitaxel): mechanisms of action. Ann Oncol 5(Suppl 6):S3–S6

    PubMed  Google Scholar 

  36. Paulos CM, Reddy JA, Leamon CP, Turk MJ, Low PS (2004) Ligand binding and kinetics of folate receptor recycling in vivo: impact on receptor-mediated drug delivery. Mol Pharmacol 66(6):1406–1414

    Article  PubMed  CAS  Google Scholar 

  37. Parker N, Turk MJ, Westrick E, Lewis JD, Low PS, Leamon CP (2005) Folate receptor expression in carcinomas and normal tissues determined by a quantitative radioligand binding assay. Anal Biochem 338(2):284–293

    Article  PubMed  CAS  Google Scholar 

  38. Birn H, Selhub J, Christensen EI (1993) Internalization and intracellular transport of folate-binding protein in rat kidney proximal tubule. Am J Physiol 264(2 Pt 1):C302–C310

    PubMed  CAS  Google Scholar 

  39. Birn H, Nielsen S, Christensen EI (1997) Internalization and apical-to-basolateral transport of folate in rat kidney proximal tubule. Am J Physiol 272(1 Pt 2):F70–F78

    PubMed  CAS  Google Scholar 

  40. Morshed KM, Ross DM, McMartin KE (1997) Folate transport proteins mediate the bidirectional transport of 5-methyltetrahydrofolate in cultured human proximal tubule cells. J Nutr 127(6):1137–1147

    PubMed  CAS  Google Scholar 

  41. Garin-Chesa P, Campbell I, Saigo PE, Lewis JL Jr, Old LJ, Rettig WJ (1993) Trophoblast and ovarian cancer antigen LK26. Sensitivity and specificity in immunopathology and molecular identification as a folate-binding protein. Am J Pathol 142(2):557–567

    PubMed  CAS  Google Scholar 

  42. Hosomi, Ohe Y, Mito K, Uramoto H, Moriyama E, Tanaka K, Kodama K, Niho S, Goto K, Ohmatsu H, Matsumoto T, Hojo F et al (1999) Phase I study of cisplatin and docetaxel plus mitomycin C in patients with metastatic non-small cell lung cancer. Jpn J Clin Oncol 29(11):546–549

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Dr. Philip S. Low for his valuable comments. This work was supported in part by an NIH FLAIR grant #5R44CA096020-03.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher P. Leamon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reddy, J.A., Westrick, E., Vlahov, I. et al. Folate receptor specific anti-tumor activity of folate–mitomycin conjugates. Cancer Chemother Pharmacol 58, 229–236 (2006). https://doi.org/10.1007/s00280-005-0151-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-005-0151-z

Keywords

Navigation