Skip to main content
Log in

Morphology and quantitative composition of hematopoietic cells in murine bone marrow and spleen of healthy subjects

  • Original Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

Laboratory mice play an outstanding role in modeling human development and disease. In contrast to human leukemia, the spleen is involved in almost all cases, and the bone marrow is only variably involved in murine models. Although mice have been used for medical research for over 100 years, there are only few reports with a small number of cases looking at morphology and quantitative composition of murine hematopoietic cells in the bone marrow of non-transplanted animals of most strains. To our knowledge, there is not even a single report describing the splenogram in C57BL/6J mice, one of the most commonly used strains for medical research. The present study illustrates the morphology of the hematopoietic cells in the bone marrow and spleen of non-treated C57BL/6J mice and establishes the murine myelogram from the largest healthy C57BL/6J cohort reported to date. Furthermore, we present the first murine splenogram described for C57BL/6J mice. Our study supports the acceptance of the presence of >5 % blast cells as providing clear evidence of abnormality in bone marrow like in humans. In addition, we are the first to show <1 % blast cells in the normal spleen. Interestingly, classical dysplastic changes were rare in normal healthy mice. Our study of the bone marrow and spleen of healthy non-transplanted animals provides reference ranges of each cell type and for the myeloid/erythroid ratio, which can be used to interpret preclinical gene therapy data, leukemogenesis, and hematopoiesis studies, and may improve the quality of such analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Waterston RH, Lindblad-Toh K, Birney E, Rogers J, Abril JF, Agarwal P, Agarwala R, Ainscough R, Alexandersson M, An P, Antonarakis SE, Attwood J, Baertsch R, Bailey J, Barlow K, Beck S, Berry E, Birren B, Bloom T, Bork P, Botcherby M, Bray N, Brent MR, Brown DG, Brown SD, Bult C, Burton J, Butler J, Campbell RD, Carninci P, Cawley S, Chiaromonte F, Chinwalla AT, Church DM, Clamp M, Clee C, Collins FS, Cook LL, Copley RR, Coulson A, Couronne O, Cuff J, Curwen V, Cutts T, Daly M, David R, Davies J, Delehaunty KD, Deri J, Dermitzakis ET, Dewey C, Dickens NJ, Diekhans M, Dodge S, Dubchak I, Dunn DM, Eddy SR, Elnitski L, Emes RD, Eswara P, Eyras E, Felsenfeld A, Fewell GA, Flicek P, Foley K, Frankel WN, Fulton LA, Fulton RS, Furey TS, Gage D, Gibbs RA, Glusman G, Gnerre S, Goldman N, Goodstadt L, Grafham D, Graves TA, Green ED, Gregory S, Guigo R, Guyer M, Hardison RC, Haussler D, Hayashizaki Y, Hillier LW, Hinrichs A, Hlavina W, Holzer T, Hsu F, Hua A, Hubbard T, Hunt A, Jackson I, Jaffe DB, Johnson LS, Jones M, Jones TA, Joy A, Kamal M, Karlsson EK, Karolchik D, Kasprzyk A, Kawai J, Keibler E, Kells C, Kent WJ, Kirby A, Kolbe DL, Korf I, Kucherlapati RS, Kulbokas EJ, Kulp D, Landers T, Leger JP, Leonard S, Letunic I, Levine R, Li J, Li M, Lloyd C, Lucas S, Ma B, Maglott DR, Mardis ER, Matthews L, Mauceli E, Mayer JH, McCarthy M, Kulp D, Landers T, Leger JP, Leonard S, Letunic I, Levine R, Li J, Li M, Lloyd C, Lucas S, Ma B, Maglott DR, Mardis ER, Matthews L, Mauceli E, Mayer JH, McCarthy M, McCombie WR, McLaren S, McLay K, McPherson JD, Meldrim J, Meredith B, Mesirov JP, Miller W, Miner TL, Mongin E, Montgomery KT, Morgan M, Mott R, Mullikin JC, Muzny DM, Nash WE, Nelson JO, Nhan MN, Nicol R, Ning Z, Nusbaum C, O'Connor MJ, Okazaki Y, Oliver K, Overton-Larty E, Pachter L, Parra G, Pepin KH, Peterson J, Pevzner P, Plumb R, Pohl CS, Poliakov A, Ponce TC, Ponting CP, Potter S, Quail M, Reymond A, Roe BA, Roskin KM, Rubin EM, Rust AG, Santos R, Sapojnikov V, Schultz B, Schultz J, Schwartz MS, Schwartz S, Scott C, Seaman S, Searle S, Sharpe T, Sheridan A, Shownkeen R, Sims S, Singer JB, Slater G, Smit A, Smith DR, Spencer B, Stabenau A, Stange-Thomann N, Sugnet C, Suyama M, Tesler G, Thompson J, Torrents D, Trevaskis E, Tromp J, Ucla C, Ureta-Vidal A, Vinson JP, Von Niederhausern AC, Wade CM, Wall M, Weber RJ, Weiss RB, Wendl MC, West AP, Wetterstrand K, Wheeler R, Whelan S, Wierzbowski J, Willey D, Williams S, Wilson RK, Winter E, Worley KC, Wyman D, Yang S, Yang SP, Zdobnov EM, Zody MC, Lander ES (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420:520–562

    Article  PubMed  CAS  Google Scholar 

  2. Li Z, Modlich U, Anjali M (2009) Leukemia diagnosis in murine bone marrow transplantation models. Methods Mol Biol 506:311–329

    Article  PubMed  CAS  Google Scholar 

  3. Baum C, Dullmann J, Li Z, Fehse B, Meyer J, Williams DA, von Kalle C (2003) Side effects of retroviral gene transfer into hematopoietic stem cells. Blood 101:2099–2114

    Article  PubMed  CAS  Google Scholar 

  4. Perkins AS (1989) The pathology of murine myelogenous leukemias. Curr Top Microbiol Immunol 149:3–21

    Article  PubMed  CAS  Google Scholar 

  5. Li Z, Beutel G, Rhein M, Meyer J, Koenecke C, Neumann T, Yang M, Krauter J, von Neuhoff N, Heuser M, Diedrich H, Gohring G, Wilkens L, Schlegelberger B, Ganser A, Baum C (2009) High-affinity neurotrophin receptors and ligands promote leukemogenesis. Blood 113:2028–2037

    Article  PubMed  CAS  Google Scholar 

  6. Antipov IG, Karpova GV, Golosov OS, Novitskii VV, Lapina GN (1978) Characteristics of the blood system of inbred and mongrel mice. Biull Eksp Biol Med 85:501–503

    PubMed  CAS  Google Scholar 

  7. Mitsui T, Watanabe S, Taniguchi Y, Hanada S, Ebihara Y, Sato T, Heike T, Mitsuyama M, Nakahata T, Tsuji K (2003) Impaired neutrophil maturation in truncated murine G-CSF receptor-transgenic mice. Blood 101:2990–2995

    Article  PubMed  CAS  Google Scholar 

  8. Heissig B, Lund LR, Akiyama H, Ohki M, Morita Y, Romer J, Nakauchi H, Okumura K, Ogawa H, Werb Z, Dano K, Hattori K (2007) The plasminogen fibrinolytic pathway is required for hematopoietic regeneration. Cell Stem Cell 1:658–670

    Article  PubMed  CAS  Google Scholar 

  9. Kogan SC, Ward JM, Anver MR, Berman JJ, Brayton C, Cardiff RD, Carter JS, de Coronado S, Downing JR, Fredrickson TN, Haines DC, Harris AW, Harris NL, Hiai H, Jaffe ES, MacLennan IC, Pandolfi PP, Pattengale PK, Perkins AS, Simpson RM, Tuttle MS, Wong JF, Morse HC 3rd (2002) Bethesda proposals for classification of nonlymphoid hematopoietic neoplasms in mice. Blood 100:238–245

    Article  PubMed  CAS  Google Scholar 

  10. Ulich TR, del Castillo J (1991) The hematopoietic and mature blood cells of the rat: their morphology and the kinetics of circulating leukocytes in control rats. Exp Hematol 19:639–648

    PubMed  CAS  Google Scholar 

  11. Yang M, Büsche G, Ganser A, Li Z. (2012) Cytological characterization of murine bone marrow and spleen hematopoietic compartments for improved assessment of toxicity in preclinical gene marking models. Ann Hematol

  12. Bain BJ (1996) The bone marrow aspirate of healthy subjects. Br J Haematol 94:206–209

    Article  PubMed  CAS  Google Scholar 

  13. Vardiman JW, Thiele J, Arber DA, Brunning RD, Borowitz MJ, Porwit A, Harris NL, Le Beau MM, Hellstrom-Lindberg E, Tefferi A, Bloomfield CD (2009) The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood 114:937–951

    Article  PubMed  CAS  Google Scholar 

  14. Fredrickson TN, Harris AW (2000) Atlas of mouse hematopathology. Harwood Academic Publishers, The Netherlands, pp 15–24

  15. Biermann H, Pietz B, Dreier R, Schmid KW, Sorg C, Sunderkotter C (1999) Murine leukocytes with ring-shaped nuclei include granulocytes, monocytes, and their precursors. J Leukoc Biol 65:217–231

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Deutsche Forschungsgemeinschaft (DFG, Li 1608/2-1 and SPP1230) and the Deutsche Krebshilfe (grant 108245). We are very grateful to Prof. Dr. Christopher Baum for his support; Rena-Mareike Struß, Jessica Wenzl, Cindy Elfers, and Thomas Neumann for technical assistance; and Dr. Michael Morgan for critical reading of this paper. We also thank Stefanie Ernst and Dr. Michael Schneider (Institute of Biometrics, MHH) for help with statistical analysis. This study is part of the COST Action BM0801 (EuGESMA).

Conflict of interest

The authors do not declare any competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhixiong Li.

Additional information

AG and ZL are co-senior authors

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Interestingly, band neurotrophil has 0–6 bodies in nucleus (Original magnification, ×1000). This is gender-independent. (PDF 61 kb)

Fig. S2

Chromatin filaments grow between corpuscles (Fig. S2A) and their contraction promote the development of nuclear distortions (Fig. 2B, C, D) (×1000). (PDF 47 kb)

Fig. S3

Few segmented neurotrophils do not have nuclear distortion (A), but most form 1–2 Figs. 8 (B, C, D) (×1000). (PDF 46 kb)

Fig. S4

Showing typical macrophage (A) and mature megakaryocyte (B) from normal bone marrow (×60). (PDF 43 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, M., Büsche, G., Ganser, A. et al. Morphology and quantitative composition of hematopoietic cells in murine bone marrow and spleen of healthy subjects. Ann Hematol 92, 587–594 (2013). https://doi.org/10.1007/s00277-012-1653-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-012-1653-5

Keywords

Navigation