Skip to main content

Advertisement

Log in

Hypoxia-inducible factors in mantle cell lymphoma: implication for an activated mTORC1→HIF-1α pathway

  • Original Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

Aberrant activation of phosphoinositide-3 kinase/Akt (PI3K/Akt) and mammalian target of rapamycin (mTOR) signaling is implicated in the pathogenesis of mantle cell lymphoma (MCL). We previously showed oncogenic activation of PI3K/Akt pathway in a subset of MCL patients. In this study, we investigated downstream the immunohistochemical expression of Ser2448pmTOR [indicative of mTOR complex 1 (mTORC1) activation status] as well as of hypoxia-inducible factor 1 alpha (HIF-1α), hypoxia-inducible factor 2 alpha (HIF-2α), p53, and p21 in the same series of MCL patients. Additionally, correlation of these proteins with activated Akt (Ser473pAkt) and established histological prognostic factors was examined. Thirty-five tissue samples (28 classical type and seven blastoid variant) were included. The neoplastic cells expressed Ser2448pmTOR in 61.7%, HIF-1α in 73.5%, HIF-2α in 23.5%, and p53 in 18.2% of patients, while p21 was negative in all examined samples. In addition, 72% of patients who expressed HIF-1α had also Ser2448pmTOR expression (p = 0.041). HIF-1α expression was also correlated to an elevated (≥30%) Ki-67 (p = 0.031) and blastoid variant of disease (p = 0.017). In conclusion, we report for the first time common expression of HIF-alphas, especially HIF-1α, in MCL patients. Furthermore, an overall activation of mTORC1→HIF-1α axis and a potential role of Ser2448pmTOR in the regulation of HIF-1α in MCL patients are suggested. Finally, HIF-1α appears to be associated with more aggressive disease. A pathogenetic role for both mTORC1 and HIF-1α in MCL is implied, which will possibly lead to more efficient target therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Obrador-Hevia A, Fernández de Mattos S, Villalonga P, Rodríguez J (2009) Molecular biology of mantle cell lymphoma: from profiling studies to new therapeutic strategies. Blood Rev 23:205–216

    Article  CAS  PubMed  Google Scholar 

  2. Rudelius M, Pittaluga S, Nishizuka S, Pham TH, Fend F, Jaffe ES, Quintanilla-Martinez L, Raffeld M (2006) Constitutive activation of Akt contributes to the pathogenesis and survival of mantle cell lymphoma. Blood 108:1668–1676

    Article  CAS  PubMed  Google Scholar 

  3. Peponi E, Drakos E, Reyes G, Leventaki V, Rassidakis GZ, Medeiros LJ (2006) Activation of mammalian target of rapamycin signaling promotes cell cycle progression and protects cells from apoptosis in mantle cell lymphoma. Am J Pathol 169:2171–2180

    Article  CAS  PubMed  Google Scholar 

  4. Dal Col J, Zancai P, Terrin L, Guidoboni M, Ponzoni M, Pavan A, Spina M, Bergamin S, Rizzo S, Tirelli U, De Rossi A, Doglioni C, Dolcetti R (2008) Distinct functional significance of Akt and mTOR constitutive activation in mantle cell lymphoma. Blood 111:5142–5151

    Article  CAS  PubMed  Google Scholar 

  5. Psyrri A, Papageorgiou S, Liakata E, Scorilas A, Rontogianni D, Kontos CK, Argyriou P, Pectasides D, Harhalakis N, Pappa V, Kolialexi A, Economopoulou C, Kontsioti F, Maratou E, Dimitriadis G, Economopoulou P, Economopoulos T (2009) Phosphatidylinositol 3′-kinase catalytic subunit alpha gene amplification contributes to the pathogenesis of mantle cell lymphoma. Clin Cancer Res 15:5724–5732

    Article  CAS  PubMed  Google Scholar 

  6. Soliman GA (2005) The mammalian target of rapamycin signaling network and gene regulation. Curr Opin Lipidol 16:317–323

    Article  CAS  PubMed  Google Scholar 

  7. Wullschleger S, Loewith R, Hall MN (2006) TOR signaling in growth and metabolism. Cell 124:471–484

    Article  CAS  PubMed  Google Scholar 

  8. Dunlop EA, Tee AR (2009) Mammalian target of rapamycin complex 1: signalling inputs, substrates and feedback mechanisms. Cell Signal 21:827–835

    Article  CAS  PubMed  Google Scholar 

  9. Yuan R, Kay A, Berg WJ, Lebwohl D (2009) Targeting tumorigenesis: development and use of mTOR inhibitors in cancer therapy. J Hematol Oncol 2:45

    Article  PubMed  Google Scholar 

  10. Manning BD, Cantley LC (2007) AKT/PKB signaling: navigating downstream. Cell 129:1261–1274

    Article  CAS  PubMed  Google Scholar 

  11. Toschi A, Lee E, Gadir N, Ohh M, Foster DA (2008) Differential dependence of hypoxia-inducible factors 1 alpha and 2 alpha on mTORC1 and mTORC2. J Biol Chem 283:34495–34499

    Article  CAS  PubMed  Google Scholar 

  12. Rankin EB, Giaccia AJ (2008) The role of hypoxia-inducible factors in tumorigenesis. Cell Death Differ 15:678–685

    Article  CAS  PubMed  Google Scholar 

  13. Lisy K, Peet DJ (2008) Turn me on: regulating HIF transcriptional activity. Cell Death Differ 15:642–649

    Article  CAS  PubMed  Google Scholar 

  14. Gunaratnam L, Morley M, Franovic A, de Paulsen N, Mekhail K, Parolin DA, Nakamura E, Lorimer IA, Lee S (2003) Hypoxia inducible factor activates the transforming growth factor-alpha/epidermal growth factor receptor growth stimulatory pathway in VHL(−/−) renal cell carcinoma cells. J Biol Chem 278:44966–44974

    Article  CAS  PubMed  Google Scholar 

  15. Le Cras TD, Korfhagen TR, Davidson C, Schmidt S, Fenchel M, Ikegami M, Whitsett JA, Hardie WD (2010) Inhibition of PI3K by PX-866 prevents transforming growth factor-alpha-induced pulmonary fibrosis. Am J Pathol 176:679–686

    Article  PubMed  Google Scholar 

  16. Brugarolas J, Lei K, Hurley RL, Manning BD, Reiling JH, Hafen E, Witters LA, Ellisen LW, Kaelin WG Jr (2004) Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressor complex. Genes Dev 18:2893–2904

    Article  CAS  PubMed  Google Scholar 

  17. Pistollato F, Rampazzo E, Abbadi S, Della Puppa A, Scienza R, D'Avella D, Denaro L, Te Kronnie G, Panchision DM, Basso G (2009) Molecular mechanisms of HIF-1alpha modulation induced by oxygen tension and BMP2 in glioblastoma derived cells. PLoS ONE 4:e6206

    Article  PubMed  Google Scholar 

  18. Chen D, Li M, Luo J, Gu W (2003) Direct interactions between HIF-1 alpha and Mdm2 modulate p53 function. J Biol Chem 278:13595–13598

    Article  CAS  PubMed  Google Scholar 

  19. Yap TA, Garrett MD, Walton MI, Raynaud F, de Bono JS, Workman P (2008) Targeting the PI3K-AKT-mTOR pathway: progress, pitfalls, and promises. Curr Opin Pharmacol 8:393–412

    Article  CAS  PubMed  Google Scholar 

  20. Chang F, Lee JT, Navolanic PM, Steelman LS, Shelton JG, Blalock WL, Franklin RA, McCubrey JA (2003) Involvement of PI3K/Akt pathway in cell cycle progression, apoptosis, and neoplastic transformation: a target for cancer chemotherapy. Leukemia 17:590–603

    Article  CAS  PubMed  Google Scholar 

  21. Drakos E, Atsaves V, Li J, Leventaki V, Andreeff M, Medeiros LJ, Rassidakis GZ (2009) Stabilization and activation of p53 downregulates mTOR signaling through AMPK in mantle cell lymphoma. Leukemia 23:784–790

    Article  CAS  PubMed  Google Scholar 

  22. Swerdlow SH, Campo E, Seto M, Müller-Hermelink HK (2008) Mantle cell lymphoma. In: Swerdlow SH, Campo E, Harris NL, Jaffre ES, Pileri SA (eds) WHO classification of tumours of haematopoietic and lymphoid tissue. IARC, Lyon, pp 229–232

    Google Scholar 

  23. Copp J, Manning G, Hunter T (2009) TORC-specific phosphorylation of mammalian target of rapamycin (mTOR): phospho-Ser2481 is a marker for intact mTOR signaling complex 2. Cancer Res 69:1821–1827

    Article  CAS  PubMed  Google Scholar 

  24. Rosner M, Siegel N, Valli A, Fuchs C, Hengstschläger M (2010) mTOR phosphorylated at S2448 binds to raptor and rictor. Amino Acids 38:223–228

    Article  CAS  PubMed  Google Scholar 

  25. Dai B, Kong YY, Ye DW, Ma CG, Zhou X, Yao XD (2009) Activation of the mammalian target of rapamycin signalling pathway in prostate cancer and its association with patient clinicopathological characteristics. BJU Int 104:1009–1016

    Article  CAS  PubMed  Google Scholar 

  26. Giatromanolaki A, Koukourakis MI, Pezzella F, Sivridis E, Turley H, Harris AL, Gatter KC (2008) Phosphorylated VEGFR2/KDR receptors are widely expressed in B-cell non-Hodgkin’s lymphomas and correlate with hypoxia inducible factor activation. Hematol Oncol 26:219–224

    Article  PubMed  Google Scholar 

  27. Went P, Dellas T, Bourgau C, Maurer R, Augustin F, Tzankov A, Dirnhofer S (2004) Expression profile and prognostic significance of CD24, p53 and p21 in lymphomas. A tissue microarray study of over 600 non-Hodgkin lymphomas. Dtsch Med Wochenschr 129:2094–2099

    Article  CAS  PubMed  Google Scholar 

  28. Klapper W, Hoster E, Determann O, Oschlies I, van der Laak J, Berger F, Bernd HW, Cabeçadas J, Campo E, Cogliatti S, Hansmann ML, Kluin PM, Kodet R, Krivolapov YA, Loddenkemper C, Stein H, Möller P, Barth TE, Müller-Hermelink K, Rosenwald A, Ott G, Pileri S, Ralfkiaer E, Rymkiewicz G, van Krieken JH, Wacker HH, Unterhalt M, Hiddemann W, Dreyling M, for the European MCL Network (2009) Ki-67 as a prognostic marker in mantle cell lymphoma-consensus guidelines of the pathology panel of the European MCL Network. J Hematop 2:103–111

    Article  Google Scholar 

  29. Determann O, Hoster E, Ott G, Wolfram Bernd H, Loddenkemper C, Leo Hansmann M, Barth TE, Unterhalt M, Hiddemann W, Dreyling M, Klapper W, European Mantle Cell Lymphoma Network and the German Low Grade Lymphoma Study Group (2008) European Mantle Cell Lymphoma Network and the German Low Grade Lymphoma Study Group. Ki-67 predicts outcome in advanced-stage mantle cell lymphoma patients treated with anti-CD20 immunochemotherapy: results from randomized trials of the European MCL Network and the German Low Grade Lymphoma Study Group. Blood 111:2385–2387

    Article  CAS  PubMed  Google Scholar 

  30. Acosta-Jaquez HA, Keller JA, Foster KG, Ekim B, Soliman GA, Feener EP, Ballif BA, Fingar DC (2009) Site-specific mTOR phosphorylation promotes mTORC1-mediated signaling and cell growth. Mol Cell Biol 29:4308–4324

    Article  CAS  PubMed  Google Scholar 

  31. Swinson DE, Jones JL, Cox G, Richardson D, Harris AL, O'Byrne KJ (2004) Hypoxia-inducible factor-1 alpha in non small cell lung cancer: relation to growth factor, protease and apoptosis pathways. Int J Cancer 111:43–50

    Article  CAS  PubMed  Google Scholar 

  32. Passam FH, Alexandrakis MG, Kafousi M, Fotinou M, Darivianaki K, Tsirakis G, Roussou PA, Stathopoulos EN, Siafakas NM (2009) Histological expression of angiogenic factors: VEGF, PDGFRalpha, and HIF-1alpha in Hodgkin lymphoma. Pathol Res Pract 205:11–20

    Article  PubMed  Google Scholar 

  33. Stewart M, Talks K, Leek R, Turley H, Pezzella F, Harris A, Gatter K (2002) Expression of angiogenic factors and hypoxia inducible factors HIF 1, HIF 2 and CA IX in non-Hodgkin’s lymphoma. Histopathology 40:253–260

    Article  CAS  PubMed  Google Scholar 

  34. Evens AM, Schumacker PT, Helenowski IB, Singh AT, Dokic D, Keswani A, Kordeluk E, Raji A, Winter JN, Jovanovic BD, Holmgren A, Nelson BP, Gordon LI (2008) Hypoxia inducible factor-alpha activation in lymphoma and relationship to the thioredoxin family. Br J Haematol 141:676–680

    Article  CAS  PubMed  Google Scholar 

  35. Evens AM, Sehn LH, Farinha P, Nelson BP, Raji A, Lu Y, Brakman A, Parimi V, Winter JN, Schumacker PT, Gascoyne RD, Gordon LI (2010) Hypoxia-inducible factor-1 alpha expression predicts superior survival in patients with diffuse large B-cell lymphoma treated with R-CHOP. J Clin Oncol 28:1017–1024

    Article  CAS  PubMed  Google Scholar 

  36. Miyazawa M, Yasuda M, Fujita M, Hirabayashi K, Hirasawa T, Kajiwara H, Muramatsu T, Miyazaki S, Harasawa M, Matsui N, Ogane N, Murakami M, Mikami M, Yanase T, Osamura RY (2010) Granulosa cell tumor with activated mTOR-HIF-1alpha-VEGF pathway. J Obstet Gynaecol Res 36:448–453

    Article  CAS  PubMed  Google Scholar 

  37. Miyazawa M, Yasuda M, Fujita M, Kajiwara H, Hirabayashi K, Takekoshi S, Hirasawa T, Murakami M, Ogane N, Kiguchi K, Ishiwata I, Mikami M, Osamura RY (2009) Therapeutic strategy targeting the mTOR-HIF-1alpha-VEGF pathway in ovarian clear cell adenocarcinoma. Pathol Int 59:19–27

    Article  CAS  PubMed  Google Scholar 

  38. Greijer AE, Delis-van Diemen PM, Fijneman RJ, Giles RH, Voest EE, van Hinsbergh VW, Meijer GA (2008) Presence of HIF-1 and related genes in normal mucosa, adenomas and carcinomas of the colorectum. Virchows Arch 452:535–544

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Ms. Giannopoulou Ioanna, Ms. Theohari Irene, and Prof. Nakopoulou Lydia for providing us tissue samples which served as positive controls for Ser2448pmTOR staining. We also acknowledge Mr. Konstantinos Mastoris for his valuable help in designing the experiments and standardizing the antibodies.

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sotirios G. Papageorgiou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Argyriou, P., Papageorgiou, S.G., Panteleon, V. et al. Hypoxia-inducible factors in mantle cell lymphoma: implication for an activated mTORC1→HIF-1α pathway. Ann Hematol 90, 315–322 (2011). https://doi.org/10.1007/s00277-010-1070-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-010-1070-6

Keywords

Navigation