Skip to main content

Advertisement

Log in

Oncology imaging in the abdomen and pelvis: where cancer hides

  • Published:
Abdominal Imaging Aims and scope Submit manuscript

Abstract

As the incidence of cancer continues to increase, imaging will play an ever more important role in the detection, diagnosis, staging, surveillance, and therapeutic monitoring of cancer. Diagnostic errors in the initial discovery of cancer or at follow-up assessments can lead to missed opportunities for curative treatments or altering or reinitiating therapies, as well as adversely impact clinical trials. Radiologists must have an understanding of cancer biology, treatments, and imaging appearance of therapeutic effects and be mindful that metastatic disease can involve virtually any organ system. Knowledge of patient history and tumor biology allows for optimizing imaging protocols. The majority of cancer imaging utilizes computed tomography, where contrast enhancement characteristics of lesions can be exploited and detection of subtle lesions can involve manipulation of window width and level settings, multiplanar reconstruction, and maximum intensity projections. For magnetic resonance imaging, diffusion-weighted imaging can render lesions more conspicuous, improve characterization, and help assess therapeutic response. Positron emission tomography with 18F-labeled fluorodeoxyglucose and sodium fluoride are invaluable in detecting occult existing and new cancerous lesions, characterizing indeterminate lesions, and assessing treatment effects. The most common anatomic “hiding places” for cancer include metastases to solid organs, such as the kidneys and pancreas, gastrointestinal tract, peritoneum and retroperitoneum, neural axis, muscular body wall, and bones. Consistent work habits, employment of appropriate technologies, and particular attention to the above anatomic areas can enhance detection, staging, and reassessments of these complex and often stealthy diseases, ensuring the radiologists’ integral role in the cancer care team.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Horner MJ, Ries LAG, Krapcho M, et al. (2009) SEER Cancer Statistics Review, 1975–2006. National Cancer Institute. http://seer.cancer.gov/csr/1975_2006/. Accessed 23 Jan 2012

  2. Sweetenham JW, Whitehouse JM, Williams CJ, Mead GM (1988) Involvement of the gastrointestinal tract by metastases from germ cell tumors of the testis. Cancer 61:2566–2570

    Article  PubMed  CAS  Google Scholar 

  3. Pomerantz SM, White CS, Krebs TL, et al. (2000) Liver and bone window settings for soft-copy interpretation of chest and abdominal CT. AJR Am J Roentgenol 174:311–314

    Article  PubMed  CAS  Google Scholar 

  4. Soyer P, Poccard M, Boudiaf M, et al. (2004) Detection of hypovascular hepatic metastases at triple-phase helical CT: sensitivity of phases and comparison with surgical and histopathologic findings. Radiology 231:413–420

    Article  PubMed  Google Scholar 

  5. Valls C, Andía E, Sánchez A, et al. (2001) Hepatic mestastases from colorectal cancer: preoperative detection and assessment of resectability with helical CT. Radiology 218:55–60

    PubMed  CAS  Google Scholar 

  6. Lee KH, O’Malley ME, Haider MA, Hanbidge A (2004) Triple-phase MDCT of hepatocellular carcinoma. AJR Am J Roentgenol 182:643–649

    Article  PubMed  CAS  Google Scholar 

  7. Khosa F, Khan AN, Eisenberg RL (2011) Hypervascular liver lesions on MRI. AJR Am J Roentgenol 197:W204–W220

    Article  PubMed  Google Scholar 

  8. Kim YN, Choi D, Kim SH, et al. (2009) Gastric cancer staging at isotropic MDCT including coronal and sagittal MPR images: endoscopically diagnosed early vs. advanced gastric cancer. Abdom Imaging 34:26–34

    Article  PubMed  Google Scholar 

  9. Ichikawa T, Erturk SM, Sou H, et al. (2006) MDCT of pancreatic adenocarcinoma: optimal imaging phases and multiplanar reformatted imaging. AJR Am J Roentgenol 187:1513–1520

    Article  PubMed  Google Scholar 

  10. Hopper KD, Huber SJ, Kasales CJ, et al. (1997) The clinical usefulness of routine stacked multiplanar reconstruction in helical abdominal computed tomography. Invest Radiol 32:550–556

    Article  PubMed  CAS  Google Scholar 

  11. Angelelli G, Grimaldi V, Spinelli F, Scardapane A, Sardaro A (2008) Multi slice computed tomography in the study of pulmonary metastases. Radiol Med 113:954–967

    Article  PubMed  CAS  Google Scholar 

  12. Gruden JF, Ouanounou S, Tigges S, Norris SD, Klausner TS (2002) Incremental benefit of maximum intensity projection images on observer detection of small pulmonary nodules revealed by multidetector CT. AJR Am J Roentgenol 179:149–157

    Article  PubMed  Google Scholar 

  13. Malayeri AA, El Khouli RH, Zaheer A, et al. (2011) Principles and applications of diffusion-weighted imaging in cancer detection, staging, and treatment follow-up. Radiographics 31:1773–1791

    Article  PubMed  Google Scholar 

  14. Padhani AR, Koh DM, Collins DJ (2011) Whole-body diffusion-weighted MR imaging in cancer: current status and research directions. Radiology 261:700–718

    Article  PubMed  Google Scholar 

  15. Charles-Edwards EM, deSouza NM (2006) Diffusion-weighted magnetic resonance imaging and its application to cancer. Cancer Imaging 6:135–143

    Article  PubMed  Google Scholar 

  16. Yang DM, Jahng GH, Kim HC, et al. (2011) The detection and discrimination of malignant and benign focal hepatic lesions: T2 weighted vs diffusion-weighted MRI. Br J Radiol 84:319–326

    Article  PubMed  CAS  Google Scholar 

  17. Levy A, Medjhoul A, Caramella C, et al. (2011) Interest of diffusion-weighted echo-planar MR imaging and apparent diffusion coefficient mapping in gynecological malignancies: a review. J Magn Reson Imaging 33:1020–1027

    Article  PubMed  Google Scholar 

  18. Fujii S, Matsusue E, Kanasaki Y, et al. (2008) Detection of peritoneal dissemination in gynecological malignancy: evaluation by diffusion-weighted MR imaging. Eur Radiol 18:18–23

    Article  PubMed  Google Scholar 

  19. Galbán S, Brisset JC, Rehemtulla A, et al. (2010) Diffusion-weighted MRI for assessment of early cancer treatment response. Curr Pharm Biotechnol 11:701–708

    Article  PubMed  Google Scholar 

  20. Facey K, Bradbury I, Laking G, Payne E (2007) Overview of the clinical effectiveness of positron emission tomography imaging in selected cancers. Health Technol Assess 11:iii–iv, xi–267

  21. Briggs RH, Chowdhury FU, Lodge JP, Scarsbrook AF (2011) Clinical impact of FDG PET–CT in patients with potentially operable metastatic colorectal cancer. Clin Radiol 66:1167–1174

    Article  PubMed  CAS  Google Scholar 

  22. Czernin J, Allen-Auerbach M, Schelbert HR (2007) Improvements in cancer staging with PET/CT: literature-based evidence as of September 2006. J Nucl Med 48(Suppl 1):78S–88S

    PubMed  CAS  Google Scholar 

  23. Iyer VR, Lee SI (2010) MRI, CT, and PET/CT for ovarian cancer detection and adnexal lesion characterization. AJR Am J Roentgenol 194:311–321

    Article  PubMed  Google Scholar 

  24. Boland GW, Blake MA, Holalkere NS, Hahn PF (2009) PET/CT for the characterization of adrenal masses in patients with cancer: qualitative versus quantitative accuracy in 150 consecutive patients. AJR Am J Roentgenol 192:956–962

    Article  PubMed  Google Scholar 

  25. Iagaru A, Mittra E, Dick DW, Gambhir SS (2012) Prospective evaluation of (99 m)Tc MDP scintigraphy, (18)F NaF PET/CT, and (18)F FDG PET/CT for detection of skeletal metastases. Mol Imaging Biol 14:252–259

    Article  PubMed  Google Scholar 

  26. Messiou C, Cook G, deSouza NM (2009) Imaging metastatic bone disease from carcinoma of the prostate. Br J Cancer 101:1225–1232

    Article  PubMed  CAS  Google Scholar 

  27. Grant FD, Fahey FH, Packard AB, et al. (2008) Skeletal PET with 18F-fluoride: applying new technology to an old tracer. J Nucl Med 49:68–78

    Article  PubMed  Google Scholar 

  28. Klein KA, Stephen DH, Welch TJ (1998) CT characteristics of metastatic disease to the pancreas. Radiographics 18:369–378

    PubMed  CAS  Google Scholar 

  29. Adsay NV, Andea A, Basturk O, et al. (2004) Secondary tumors of the pancreas: an analysis of a surgical and autopsy database and review of the literature. Virchows Arch 444:527–535

    Article  PubMed  Google Scholar 

  30. Merkle EM, Boaz T, Kolokythas O, et al. (1998) Metastases to the pancreas. Br J Radiol 71:1208–1214

    PubMed  CAS  Google Scholar 

  31. Bailey JE, Roubidoux MA, Dunnick NR (1998) Secondary renal neoplasms. Abdom Imaging 23:266–274

    Article  PubMed  CAS  Google Scholar 

  32. Dyer R, DiSantis DJ, McClennan BL (2008) Simplified imaging approach for evaluation of the solid renal mass in adults. Radiology 247:331–343

    Article  PubMed  Google Scholar 

  33. Macari M, Megibow AJ, Balthazar EJ (2007) A pattern approach to the abnormal small bowel: observations at MDCT and CT enterography. AJR Am J Roentgenol 188:1344–1355

    Article  PubMed  Google Scholar 

  34. Horton KM, Fishman EK (2004) Multidetector-row computed tomography and 3-dimensional computed tomography imaging of small bowel neoplasms: current concept in diagnosis. J Comput Assist Tomogr 28:106–116

    Article  PubMed  Google Scholar 

  35. Young BM, Fletcher JG, Booya F, et al. (2008) Head-to-head comparison of oral contrast agents for cross-sectional enterography: small bowel distention, timing, and side effects. J Comput Assist Tomogr 32:32–38

    Article  PubMed  Google Scholar 

  36. Jacquet P, Jelinek JS, Steves MA, Sugarbaker PH (1993) Evaluation of computed tomography in patients with peritoneal carcinomatosis. Cancer 72:1631–1636

    Article  PubMed  CAS  Google Scholar 

  37. Carmignani CP, Sugarbaker TA, Bromley CM, Sugarbaker PH (2003) Intraperitoneal cancer dissemination: mechanisms of the patterns of spread. Cancer Metastasis Rev 22:465–472

    Article  PubMed  Google Scholar 

  38. Meyers MA (1973) Distribution of intra-abdominal malignant seeding: dependency on dynamics of flow of ascitic fluid. Am J Roentgenol Radium Ther Nucl Med 119:198–206

    Article  PubMed  CAS  Google Scholar 

  39. Meyers MA, McSweeney J (1972) Secondary neoplasms of the bowel. Radiology 105:1–11

    PubMed  CAS  Google Scholar 

  40. Meyers MA (1975) Metastatic seeding along the small bowel mesentery. Roentgen features. Am J Roentgenol Radium Ther Nucl Med 123:67–73

    Article  PubMed  CAS  Google Scholar 

  41. Feldman GB, Knapp RC (1974) Lymphatic drainage of the peritoneal cavity and its significance in ovarian cancer. Am J Obstet Gynecol 119:991–994

    PubMed  CAS  Google Scholar 

  42. Bhuyan P, Mahapatra S, Mahapatra S, et al. (2010) Extraovarian primary peritoneal papillary serous carcinoma. Arch Gynecol Obstet 281:561–564

    Article  PubMed  Google Scholar 

  43. Shmueli E, Leider-Trejo L, Schwartz I, Aderka D, Inbar M (2001) Primary papillary serous carcinoma of the peritoneum in a man. Ann Oncol 12:563–567

    Article  PubMed  CAS  Google Scholar 

  44. Levy AD, Shaw JC, Sobin LH (2009) Secondary tumors and tumorlike lesions of the peritoneal cavity: imaging features with pathologic correlation. Radiographics 29:347–373

    Article  PubMed  Google Scholar 

  45. Chua TC, Robertson G, Liauw W, et al. (2009) Intraoperative hyperthermic intraperitoneal chemotherapy after cytoreductive surgery in ovarian cancer peritoneal carcinomatosis: systemic review of current results. J Cancer Res Clin Oncol 135:1637–1645

    Article  PubMed  Google Scholar 

  46. Roviello F, Caruso S, Marrelli D, et al. (2011) Treatment of peritoneal carcinomatosis with cytoreductive surgery and hyperthermic intraperitoneal chemotherapy: state of the art and future developments. Surg Oncol 20:e38–e54

    Article  PubMed  Google Scholar 

  47. Surabhi VR, Menias C, Prasad SR, et al. (2008) Neoplastic and non-neoplastic proliferative disorders of the perirenal space: cross-sectional imaging findings. Radiographics 28:1005–1017

    Article  PubMed  Google Scholar 

  48. Yeo SG, Kim DY, Kim TH, et al. (2010) Curative chemoradiotherapy for isolated retroperitoneal lymph node recurrence of colorectal cancer. Radiother Oncol 97:307–311

    Article  PubMed  Google Scholar 

  49. Ho TW, Mack LA, Temple WJ (2011) Operative salvage for retroperitoneal nodal recurrence in colorectal cancer: a systemic review. Ann Surg Oncol 18:697–703

    Article  PubMed  Google Scholar 

  50. Mahendru G, Chong V (2009) Meninges in cancer imaging. Cancer Imaging 9(Spec No A):S14–21

    Google Scholar 

  51. Grewal J, Saria MG, Kesari S (2012) Novel approaches to treating leptomeningeal metastases. J Neurooncol 106:225–234

    Article  PubMed  Google Scholar 

  52. Wasserman WR, Glass JP, Posner JB (1982) Diagnosis and treatment of leptomeningeal metastases from solid tumors: experience with 90 patients. Cancer 49:759–772

    Article  Google Scholar 

  53. Kesari S, Batchelor TT (2003) Leptomeningeal metastases. Neurol Clin 21:25–66

    Article  PubMed  Google Scholar 

  54. Demopoulos A (2004) Leptomeningeal metastases. Curr Neurol Neurosci Rep 4:196–204

    Article  PubMed  Google Scholar 

  55. Sze G, Soletsky S, Bronen R, Krol G (1989) MR imaging of the cranial meninges with emphasis on contrast enhancement and meningeal carcinomatosis. AJR Am J Roentgenol 153:1039–1049

    Article  PubMed  CAS  Google Scholar 

  56. Collie DA, Brush JP, Lammie GA, et al. (1999) Imaging features of leptomeningeal metastases. Clin Radiol 54:765–771

    Article  PubMed  CAS  Google Scholar 

  57. Lee BY, Choi JE, Park JM, et al. (2008) Various image findings of skeletal muscle metastases with clinical correlation. Skeletal Radiol 37:923–928

    Article  PubMed  Google Scholar 

  58. Williams JB, Youngberg RA, Bui-Mansfield LT, Pitcher JD (1997) MR imaging of skeletal muscle metastases. AJR Am J Roentgenol 168:555–557

    Article  PubMed  CAS  Google Scholar 

  59. Pickren JW (1976) Use and limitations of autopsy data. In: Weiss L (ed) Fundamental aspects of metastasis. Amsterdam: North-Holland, pp 377–384

    Google Scholar 

  60. Pretorius ES, Fishman EK (2000) Helical CT of skeletal muscle metastases from primary carcinomas. AJR Am J Roentgenol 174:401–404

    Article  PubMed  CAS  Google Scholar 

  61. Magee T, Rosenthal H (2002) Skeletal muscle metastases at sites of documented trauma. AJR Am J Roentgenol 178:985–988

    Article  PubMed  Google Scholar 

  62. Stoller DW (2004) Diagnostic imaging: orthopaedics, 1st edn. Salt Lake City: Amirsys

    Google Scholar 

  63. Rosenthal DI (1997) Radiologic diagnosis of bone metastases. Cancer 80:1595–1607

    Article  PubMed  CAS  Google Scholar 

  64. Fisher MS (1980) Lumbar spine metastasis in cervical carcinoma: a characteristic pattern. Radiology 134:631–634

    PubMed  CAS  Google Scholar 

  65. Brage ME, Simon MA (1992) Evaluation, prognosis, and medical treatment considerations of metastatic bone tumors. Orthopedics 15:589–596

    PubMed  CAS  Google Scholar 

  66. Destombe C, Botton E, Le Gal G, et al. (2007) Investigations for bone metastasis from an unknown primary. Joint Bone Spine 74:85–89

    Article  PubMed  Google Scholar 

  67. Alcalay M, Azais I, Brigeon B, et al. (1995) Strategy for identifying primary malignancies with inaugural bone metastases. Rev Rhum Engl Ed 62:632–642

    PubMed  CAS  Google Scholar 

  68. Amoroso V, Pittiani F, Grisanti S, et al. (2007) Osteoblastic flare in a patient with advanced gastric cancer after treatment with pemetrexed and oxaliplatin: implications for response assessment with RECIST criteria. BMC Cancer 7:94

    Article  PubMed  Google Scholar 

  69. Pollen JJ, Witztum KF, Ashburn WL (1984) The flare phenomenon on radionuclide bone scan in metastatic prostate cancer. AJR Am J Roentgenol 142:773–776

    Article  PubMed  CAS  Google Scholar 

  70. Wade AA, Scott JA, Kuter I, Fischman AJ (2006) Flare response in 18F-fluoride ion PET bone scanning. AJR Am J Roentgenol 186:1783–1786

    Article  PubMed  Google Scholar 

  71. Messiou C, Cook G, Reid AH, et al. (2011) The CT flare response of metastatic bone disease in prostate cancer. Acta Radiol 52:557–561

    Article  PubMed  Google Scholar 

  72. Levenson RM, Sauerbrunn BJ, Bates HR, et al. (1983) Comparative value of bone scintigraphy and radiography in monitoring tumor response in systemically treated prostatic carcinoma. Radiology 146:513–518

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven C. Eberhardt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eberhardt, S.C., Johnson, J.A. & Parsons, R.B. Oncology imaging in the abdomen and pelvis: where cancer hides. Abdom Imaging 38, 647–671 (2013). https://doi.org/10.1007/s00261-012-9941-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-012-9941-z

Keywords

Navigation