Skip to main content

Advertisement

Log in

Angiogenesis of renal cell carcinoma: perfusion CT findings

  • Published:
Abdominal Imaging Aims and scope Submit manuscript

Abstract

Objective

To observe the perfusion CT findings of renal cell carcinoma (RCC) and prospectively correlate perfusion CT parameters with tumor MVD and VEGF expression.

Methods

Dynamic contrast-enhanced multislice spiral CT was performed prospectively in 73 cases with histologically proven RCC (65 clear cell, 3 papillary, and 5 chromophobe). Blood flow (BF), blood volume (BV), mean transit time (MTT), and permeability surface-area product (PS) of RCC and normal renal cortex were measured, respectively. The tumor MVD count and VEGF expression level were determined by immunohistochemistry with specific monoclonal antibodies.

Results

There was significant difference between BF, BV, MTT, and PS of normal renal cortex (454.32 ± 110.90 mL/min/100 g, 23.53 ± 5.71 mL/100 g, 3.62 ± 1.38 s, 63.95 ± 18.85 mL/min/100 g) and RCC (261.96 ± 175.86 mL/min/100 g, 17.17 ± 8.34 mL/100 g, 7.08 ± 3.42 s, 25.07 ± 13.20 mL/min/100 g) (P < 0.01). BF and BV among RCC histologic subtypes were significantly different (P < 0.05), MTT and PS were not (P > 0.05). MVD (42.29 ± 21.00) of RCC is positively correlated with BF, BV, and PS (P < 0.01), not with MTT (P > 0.05). No relationship was found between the expression levels of VEGF and any perfusion CT parameter.

Conclusions

Perfusion CT is a feasible technique to assess tissue perfusion in patients with RCC. BV, BF, and PS correlate positively with MVD and may reflect angiogenesis of RCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Cuenod CA, Fournier L, Balvay D, et al. (2006) Tumor angiogenesis: pathophysiology and implications for contrast-enhanced MRI and CT assessment. Abdom Imaging 31:188–193

    Article  CAS  PubMed  Google Scholar 

  2. Lzawa J, Dinney CPN (2001) The role of angiogenesis in prostate and other urologic cancers: a review. Can Med Assoc J 164:662–670

    Google Scholar 

  3. d’Assignies G, Couvelard A, Bahrami S, et al. (2009) Pancreatic endocrine tumors: tumor blood flow assessed with perfusion CT reflects angiogenesis and correlates with prognostic factors. Radiology 250:407–416

    Article  PubMed  Google Scholar 

  4. Yi CA, Lee KS, Kim EA, et al. (2004) Solitary pulmonary nodules: dynamic enhanced multi-detector row CT study and comparison with vascular endothelial growth factor and microvessel density. Radiology 233:191–199

    Article  PubMed  Google Scholar 

  5. Goh V, Halligan S, Daley F, et al. (2008) Colorectal tumor vascularity: quantitative assessment with multidetector CT—do tumor perfusion measurements reflect angiogenesis? Radiology 249:510–517

    Article  PubMed  Google Scholar 

  6. Weidner N (1995) Intratumor microvessel density as a prognostic factor in cancer. Am J Pathol 147:9–19

    CAS  PubMed  Google Scholar 

  7. Xue HD, Jin ZY, Liu W, et al. (2006) Perfusion characteristics of normal pancreas and insulinoma on multi-slice spiral CT. Zhongguo Yi Xue Ke Xue Yuan Xue Bao 28:68–70

    PubMed  Google Scholar 

  8. Galvez M, York GE II, Eastwood JD (2004) CT perfusion parameter values in regions of diffusion abnormalities. Am J Neuroradiol 25:1205–1210

    PubMed  Google Scholar 

  9. Prasad SR, Humphrey PA, Catena JR, et al. (2006) Common and uncommon histologic subtypes of renal cell carcinoma: imaging spectrum with pathologic correlation. Radiographics 26:1795–1810

    Article  PubMed  Google Scholar 

  10. Yildiz E, Ayan S, Goze F, et al. (2008) Relation of microvessel density with microvascular invasion, metastasis and prognosis in renal cell carcinoma. BJU Int 101:758–764

    Article  PubMed  Google Scholar 

  11. Li ZP, Meng QF, Sun CH, et al. (2005) Tumor angiogenesis and dynamic CT in colorectal carcinoma: radiologic–pathologic correlation. World J Gastroenterol 11(9):1287–1291

    PubMed  Google Scholar 

  12. Li Y, Yang ZG, Chen TW, et al. (2008) Peripheral lung carcinoma: correlation of angiogenesis and first-pass perfusion parameters of 64-detector row CT. Lung Cancer 61:44–53

    Article  PubMed  Google Scholar 

  13. Ma SH, Xu K, Xiao ZW, et al. (2007) Peripheral lung cancer: relationship between multi-slice spiral CT perfusion imaging and tumor angiogenesis and cyclin D1 expression. Clin Imaging 31:165–177

    Article  PubMed  Google Scholar 

  14. Wang JH, Min PQ, Wang PJ, et al. (2006) Dynamic CT evaluation of tumor vascularity in renal cell carcinoma. AJR 186:1423–1430

    Article  PubMed  Google Scholar 

  15. Kaneoya K, Ueda T, Suito H, et al. (2008) Functional computed tomography imaging of tumor-induced angiogenesis: preliminary results of new tracer kinetic modeling using a computer discretization approach. Radiat Med 26:213–221

    Article  PubMed  Google Scholar 

  16. Ma SH, Le HB, Jia BH, et al. (2008) Peripheral pulmonary nodules: relationship between multi-slice spiral CT perfusion imaging and tumor angiogenesis and VEGF expression. BMC Cancer 8:186

    Article  PubMed  Google Scholar 

  17. Zhang J, Wang R, Lou H, et al. (2008) Functional computed tomographic quantification of angiogenesis in rabbit VX2 soft-tissue tumor before and after interventional therapy. J Comput Assist Tomogr 32:697–705

    Article  PubMed  Google Scholar 

  18. Passe TJ, Bluemke DA, Siegelman SS (1997) Tumor angiogenesis: tutorial on implications for imaging. Radiology 203:593–600

    CAS  PubMed  Google Scholar 

  19. Connolly DT, Heuvelman DM, Nelson R, et al. (1989) Tumor vascular permeability factor stimulates endothelial cell growth and angiogenesis. J Clin Invest 84:1470–1478

    Article  CAS  PubMed  Google Scholar 

  20. Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 258:1182–1186

    Google Scholar 

  21. Dhanabal M, Ramchandran R, Volk R, et al. (1999) Endostatin: yeast production, mutants, and antitumor effect in renal cell carcinoma. Cancer Res 59:189–197

    CAS  PubMed  Google Scholar 

  22. Morita T, Shinohara N, Tokue A (1994) Antitumor effect of a synthetic analogue of fumagillin on murine renal carcinoma. Br J Urol 74:416–421

    Article  CAS  PubMed  Google Scholar 

  23. Fujioka T, Hasegawa M, Ogin K, et al. (1996) Antitumor effects of angiogenesis inhibitor 0-(choroacetyl-carbamoyl) fumagillol (TNP-470) against murine renal carcinoma. J Urol 155:1775–1778

    Article  CAS  PubMed  Google Scholar 

  24. Stadler WM, Kuzel T, Shapiro C, et al. (1999) Multi-institutional study of the angiogenesis inhibitor TNP-470 in metastatic renal carcinoma. J Clin Oncol 17:2541–2545

    CAS  PubMed  Google Scholar 

  25. Koukourakis MI, Mavanis I, Kouklakis G, et al. (2007) Early antivascular effects of bevacizumab anti-VEGF monoclonal antibody on colorectal carcinomas assessed with functional CT imaging. Am J Clin Oncol 30:315–318

    Article  CAS  PubMed  Google Scholar 

  26. Kan Z, Phongkitkarun S, Kobayashi S, et al. (2005) Functional CT for quantifying tumor perfusion in antiangiogenic therapy in a rat model. Radiology 237:151–158

    Article  PubMed  Google Scholar 

  27. de Bazelaire C, Alsop DC, George D, et al. (2008) Magnetic resonance imaging-measured blood flow change after antiangiogenic therapy with PTK787/ZK 222584 correlates with clinical outcome in metastatic renal cell carcinoma. Clin Cancer Res 14:5548–5554

    Article  PubMed  Google Scholar 

  28. Flaherty KT, Rosen MA, Heitjan DF, et al. (2008) Pilot study of DCE-MRI to predict progression-free survival with sorafenib therapy in renal cell carcinoma. Cancer Biol Ther 7:496–501

    CAS  PubMed  Google Scholar 

  29. Makari Y, Yasuda T, Doki Y, et al. (2007) Correlation between tumor blood flow assessed by perfusion CT and effect of neoadjuvant therapy in advanced esophageal cancers. J Surg Oncol 96:220–229

    Article  PubMed  Google Scholar 

  30. McDonald DM, Choyke PL (2003) Imaging of angiogenesis: from microscope to clinic. Nat Med 9:713–725

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunwu Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Y., Zhang, J., Dai, J. et al. Angiogenesis of renal cell carcinoma: perfusion CT findings. Abdom Imaging 35, 622–628 (2010). https://doi.org/10.1007/s00261-009-9565-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-009-9565-0

Keywords

Navigation