Skip to main content
Log in

Comparison of cellular and conventional dosimetry in assessing self-dose and cross-dose delivered to the cell nucleus by electron emissions of 99mTC, 123I, 111In, 67Ga and 201Tl

  • Original article
  • Published:
European Journal of Nuclear Medicine Aims and scope Submit manuscript

Abstract.

The radionuclides used in nuclear medicine imaging emit numerous mono-energetic electrons responsible for dose heterogeneity at the cellular level. Sself, the self-dose per unit cumulated activity (which results from the radionuclide located in the target cell), and Scross, the cross-dose per unit cumulated activity (which comes from the surrounding cells) delivered to a target cell nucleus by electron emissions of technetium-99m, iodine-123, indium-111, gallium-67 and thallium-201 were computed at the cellular level. An unbounded close-packed hexagonal cell arrangement was assumed, with the same amount of radioactivity per cell. Various cell sizes and subcellular distributions of radioactivity (nucleus, cytoplasm and cell membrane) were simulated. The results were compared with those obtained using conventional dosimetry. Sself and Scross values depended closely on cell dimensions. While the self-dose depended on the tracer distribution, the latter affected the cross-dose by less than 5%. When the tracer was on the cell membrane, the self-dose was particularly low compared to the cross-dose, as the self-dose to cross-dose ratio was always less than 11%. In the case of cytoplasmic or cell membrane distribution of radioactivity, conventional electron dosimetry slightly overestimated the dose absorbed by the target cell nucleus (by 1.08- to 1.7-fold). In contrast, conventional dosimetry strongly underestimated the absorbed dose (1.1- to 75-fold) when the radioactivity was located in the nucleus. The discrepancies between conventional and cellular dosimetry call for calculations at the cellular level for a better understanding of the biological effects of radionuclides used in diagnostic imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Additional information

Received 11 July and in revised form 26 November 1997

Rights and permissions

Reprints and permissions

About this article

Cite this article

Faraggi, M., Gardin, I., Stievenart, JL. et al. Comparison of cellular and conventional dosimetry in assessing self-dose and cross-dose delivered to the cell nucleus by electron emissions of 99mTC, 123I, 111In, 67Ga and 201Tl. Eur J Nucl Med 25, 205–214 (1998). https://doi.org/10.1007/s002590050218

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s002590050218

Navigation