Skip to main content
Log in

Test–retest reproducibility of the metabotropic glutamate receptor 5 ligand [18F]FPEB with bolus plus constant infusion in humans

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

[18F]FPEB is a promising PET radioligand for the metabotropic glutamate receptor 5 (mGluR5), a potential target for the treatment of neuropsychiatric diseases. The purpose of this study was to evaluate the test–retest reproducibility of [18F]FPEB in the human brain.

Methods

Seven healthy male subjects were scanned twice, 3 – 11 weeks apart. Dynamic data were acquired using bolus plus infusion of 162 ± 32 MBq [18F]FPEB. Four methods were used to estimate volume of distribution (V T): equilibrium analysis (EQ) using arterial (EQA) or venous input data (EQV), MA1, and a two-tissue compartment model (2 T). Binding potential (BP ND) was also estimated using cerebellar white matter (CWM) or gray matter (CGM) as the reference region using EQ, 2 T and MA1. Absolute test–retest variability (aTRV) of V T and BP ND were calculated for each method. Venous blood measurements (C V) were compared with arterial input (C A) to examine their usability in EQ analysis.

Results

Regional V T estimated by the four methods displayed a high degree of agreement (r 2 ranging from 0.83 to 0.99 among the methods), although EQA and EQV overestimated V T by a mean of 9 % and 7 %, respectively, compared to 2 T. Mean values of aTRV of V T were 11 % by EQA, 12 % by EQV, 14 % by MA1 and 14 % by 2 T. Regional BP ND also agreed well among the methods and mean aTRV of BP ND was 8 – 12 % (CWM) and 7 – 9 % (CGM). Venous and arterial blood concentrations of [18F]FPEB were well matched during equilibrium (C V = 1.01 · C A, r 2 = 0.95).

Conclusion

[18F]FPEB binding shows good TRV with minor differences among analysis methods. Venous blood can be used as an alternative for input function measurement instead of arterial blood in EQ analysis. Thus, [18F]FPEB is an excellent PET imaging tracer for mGluR5 in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Meldrum BS. Glutamate as a neurotransmitter in the brain: review of physiology and pathology. J Nutr. 2000;130:1007S–15S.

    CAS  PubMed  Google Scholar 

  2. Riedel G, Platt B, Micheau J. Glutamate receptor function in learning and memory. Behav Brain Res. 2003;140:1–47.

    Article  CAS  PubMed  Google Scholar 

  3. Fitzjohn SM, Bashir ZI. Metabotropic glutamate receptor-dependent synaptic plasticity. In: Gereau RW, Swanson GT, editors. The receptors: the glutamate receptors. Totowa: Humana Press; 2008. p. 509–28.

    Chapter  Google Scholar 

  4. Benarroch EE. Metabotropic glutamate receptors: synaptic modulators and therapeutic targets for neurologic disease. Neurology. 2008;70:964–8. doi:10.1212/01.wnl.0000306315.03021.2a.

    Article  PubMed  Google Scholar 

  5. Olive MF. Metabotropic glutamate receptor ligands as potential therapeutics for addiction. Curr Drug Abuse Rev. 2009;2:83–98.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Bruno V, Battaglia G, Copani A, D’Onofrio M, Di Iorio P, De Blasi A, et al. Metabotropic glutamate receptor subtypes as targets for neuroprotective drugs. J Cereb Blood Flow Metab. 2001;21:1013–33. doi:10.1097/00004647-200109000-00001.

    Article  CAS  PubMed  Google Scholar 

  7. Bird MK, Lawrence AJ. Group I metabotropic glutamate receptors: involvement in drug-seeking and drug-induced plasticity. Curr Mol Pharmacol. 2009;2:83–94.

    Article  CAS  PubMed  Google Scholar 

  8. Lujan R, Nusser Z, Roberts JD, Shigemoto R, Somogyi P. Perisynaptic location of metabotropic glutamate receptors mGluR1 and mGluR5 on dendrites and dendritic spines in the rat hippocampus. Eur J Neurosci. 1996;8:1488–500.

    Article  CAS  PubMed  Google Scholar 

  9. De Blasi A, Conn PJ, Pin J, Nicoletti F. Molecular determinants of metabotropic glutamate receptor signaling. Trends Pharmacol Sci. 2001;22:114–20.

    Article  PubMed  Google Scholar 

  10. Patel S, Ndubizu O, Hamill T, Chaudhary A, Burns HD, Hargreaves R, et al. Screening cascade and development of potential positron emission tomography radiotracers for mGluR5: in vitro and in vivo characterization. Mol Imaging Biol. 2005;7:314–23. doi:10.1007/s11307-005-0005-4.

    Article  PubMed  Google Scholar 

  11. Wang JQ, Tueckmantel W, Zhu A, Pellegrino D, Brownell AL. Synthesis and preliminary biological evaluation of 3-[(18)F]fluoro-5-(2-pyridinylethynyl)benzonitrile as a PET radiotracer for imaging metabotropic glutamate receptor subtype 5. Synapse. 2007;61:951–61. doi:10.1002/syn.20445.

    Article  CAS  PubMed  Google Scholar 

  12. First MB, Spitzer RL, Gibbon M, Williams JBW. Structured clinical interview for DSM-IV axis I disorders, clinician version (SCID-CV). Washington: American Psychiatric Press; 1996.

    Google Scholar 

  13. Lim K, Labaree D, Li S, Huang Y. Preparation of the metabotropic glutamate receptor 5 (mGluR5) PET tracer [(18)F]FPEB for human use: an automated radiosynthesis and a novel one-pot synthesis of its radiolabeling precursor. Appl Radiat Isot. 2014;94C:349–54. doi:10.1016/j.apradiso.2014.09.006.

    Article  Google Scholar 

  14. Sullivan JM, Lim K, Labaree D, Lin SF, McCarthy TJ, Seibyl JP, et al. Kinetic analysis of the metabotropic glutamate subtype 5 tracer [(18)F]FPEB in bolus and bolus-plus-constant-infusion studies in humans. J Cereb Blood Flow Metab. 2013;33:532–41. doi:10.1038/jcbfm.2012.195.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Carson RE, Barker WC, Liow JS, Johnson CA. Design of a motion-compensation OSEM list-mode algorithm for resolution-recovery reconstruction for the HRRT. IEEE Nucl Sci Symp Conf Rec. 2003;5:3281–5

    Google Scholar 

  16. Carson RE, Channing MA, Blasberg RG, Dunn BB, Cohen RM, Rice KC, et al. Comparison of bolus and infusion methods for receptor quantitation: application to [18F]cyclofoxy and positron emission tomography. J Cereb Blood Flow Metab. 1993;13:24–42. doi:10.1038/jcbfm.1993.6.

    Article  CAS  PubMed  Google Scholar 

  17. Lassen NA. Neuroreceptor quantitation in vivo by the steady-state principle using constant infusion or bolus injection of radioactive tracers. J Cereb Blood Flow Metab. 1992;12:709–16. doi:10.1038/jcbfm.1992.101.

    Article  CAS  PubMed  Google Scholar 

  18. Ichise M, Toyama H, Innis RB, Carson RE. Strategies to improve neuroreceptor parameter estimation by linear regression analysis. J Cereb Blood Flow Metab. 2002;22:1271–81. doi:10.1097/00004647-200210000-00015.

    Article  PubMed  Google Scholar 

  19. Patel S, Hamill TG, Connolly B, Jagoda E, Li W, Gibson RE. Species differences in mGluR5 binding sites in mammalian central nervous system determined using in vitro binding with [18F]F-PEB. Nucl Med Biol. 2007;34:1009–17. doi:10.1016/j.nucmedbio.2007.07.009.

    Article  CAS  PubMed  Google Scholar 

  20. DeLorenzo C, Milak MS, Brennan KG, Kumar JS, Mann JJ, Parsey RV. In vivo positron emission tomography imaging with [11C]ABP688: binding variability and specificity for the metabotropic glutamate receptor subtype 5 in baboons. Eur J Nucl Med Mol Imaging. 2011;38:1083–94. doi:10.1007/s00259-010-1723-7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Wong DF, Waterhouse R, Kuwabara H, Kim J, Brasic JR, Chamroonrat W, et al. 18F-FPEB, a PET radiopharmaceutical for quantifying metabotropic glutamate 5 receptors: a first-in-human study of radiochemical safety, biokinetics, and radiation dosimetry. J Nucl Med. 2013;54:388–96. doi:10.2967/jnumed.112.107995.

    Article  CAS  PubMed  Google Scholar 

  22. Kuwabara H, Chamroonrat W, Mathews W, Waterhouse R, Brasic J, Guevara MR, et al. Evaluation of 11C-ABP688 and 18F-FPEB for imaging mGluR5 receptors in the human brain. J Nucl Med. 2011;52 Suppl 1:390.

    Google Scholar 

  23. DeLorenzo C, Kumar JS, Mann JJ, Parsey RV. In vivo variation in metabotropic glutamate receptor subtype 5 binding using positron emission tomography and [11C]ABP688. J Cereb Blood Flow Metab. 2011;31:2169–80. doi:10.1038/jcbfm.2011.105.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Martinez D, Slifstein M, Nabulsi N, Grassetti A, Urban NB, Perez A, et al. Imaging glutamate homeostasis in cocaine addiction with the metabotropic glutamate receptor 5 positron emission tomography radiotracer [11C]ABP688 and magnetic resonance spectroscopy. Biol Psychiatry. 2014;75:165–71. doi:10.1016/j.biopsych.2013.06.026.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Milella MS, Marengo L, Larcher K, Fotros A, Dagher A, Rosa-Neto P, et al. Limbic system mGluR5 availability in cocaine dependent subjects: a high-resolution PET [11C]ABP688 study. Neuroimage. 2014;98:195–202. doi:10.1016/j.neuroimage.2014.04.061.

    Article  CAS  PubMed  Google Scholar 

  26. Deschwanden A, Karolewicz B, Feyissa AM, Treyer V, Ametamey SM, Johayem A, et al. Reduced metabotropic glutamate receptor 5 density in major depression determined by [11C]ABP688 PET and postmortem study. Am J Psychiatry. 2011;168:727–34. doi:10.1176/appi.ajp.2011.09111607.

    Article  PubMed Central  PubMed  Google Scholar 

  27. DeLorenzo C, DellaGioia N, Bloch M, Sanacora G, Nabulsi N, Abdallah C, et al. In vivo ketamine-induced changes in [11C]ABP688 binding to metabotropic glutamate receptor subtype 5. Biol Psychiatry. 2015;77:266–75. doi:10.1016/j.biopsych.2014.06.024.

  28. Kagedal M, Cselenyi Z, Nyberg S, Raboisson P, Stahle L, Stenkrona P, et al. A positron emission tomography study in healthy volunteers to estimate mGluR5 receptor occupancy of AZD2066 – estimating occupancy in the absence of a reference region. Neuroimage. 2013;82:160–9. doi:10.1016/j.neuroimage.2013.05.006.

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

The authors thank the staff of the Yale University PET Center for their technical expertise and support.

Compliance with ethical standards

Funding

This study was supported by the Yale Pfizer Bioimaging Alliance. This study was also made possible by CTSA grant number UL1 RR024139 from the National Center for Research Resources (NCRR), a component of the National Institutes of Health (NIH), and NIH roadmap for Medical Research.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eunkyung Park.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 117 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, E., Sullivan, J.M., Planeta, B. et al. Test–retest reproducibility of the metabotropic glutamate receptor 5 ligand [18F]FPEB with bolus plus constant infusion in humans. Eur J Nucl Med Mol Imaging 42, 1530–1541 (2015). https://doi.org/10.1007/s00259-015-3094-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-015-3094-6

Keywords

Navigation