Skip to main content
Log in

Assessment of bone marrow inflammation in patients with myelofibrosis: an 18F-fluorodeoxyglucose PET/CT study

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Myelofibrosis is a haematopoietic stem cell neoplasm characterized by bone marrow inflammation, reactive marrow fibrosis and extramedullary haematopoiesis. The aim of this study was to determine if 18F-FDG PET/CT can be used to noninvasively visualize and quantify the extent and activity of bone marrow involvement.

Methods

In 30 patients, the biodistribution of 18F-FDG was analysed by measuring the standardized uptake value in the bone marrow compartment and spleen. Imaging findings were compared with laboratory, cytogenetic and histopathological data.

Results

Retention of 18F-FDG was observed in bone marrow and spleen. Bone marrow involvement varied, ranging from mildly increased uptake in the central skeleton to extensive uptake in most parts of the skeleton. The extent of bone marrow involvement decreased over time from initial diagnosis (r s  = −0.43, p = 0.019). Metabolic activity of the bone marrow decreased as the histopathological grade of fibrosis increased (r s  = −0.37, p = 0.04). There was a significant positive correlation between the metabolic activity of the bone marrow and that of the spleen (p = 0.04).

Conclusion

18F-FDG PET/CT is as a promising technique for the quantitation of bone marrow inflammation in myelofibrosis. Our data indicate that the intensity of bone marrow 18F-FDG uptake decreases as bone marrow fibrosis increases. Further evaluation in prospective studies is required to determine the potential clinical impact and prognostic significance of PET.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kroger N, Mesa RA. Choosing between stem cell therapy and drugs in myelofibrosis. Leukemia. 2008;22:474–86.

    Article  CAS  PubMed  Google Scholar 

  2. Ciurea SO, Merchant D, Mahmud N, Ishii T, Zhao Y, Hu W, et al. Pivotal contributions of megakaryocytes to the biology of idiopathic myelofibrosis. Blood. 2007;110:986–93.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Mesa RA, Silverstein MN, Jacobsen SJ, Wollan PC, Tefferi A. Population-based incidence and survival figures in essential thrombocythemia and agnogenic myeloid metaplasia: an Olmsted County Study, 1976–1995. Am J Hematol. 1999;61:10–5.

    Article  CAS  PubMed  Google Scholar 

  4. Visani G, Finelli C, Castelli U, Petti MC, Ricci P, Vianelli N, et al. Myelofibrosis with myeloid metaplasia: clinical and haematological parameters predicting survival in a series of 133 patients. Br J Haematol. 1990;75:4–9.

    Article  CAS  PubMed  Google Scholar 

  5. Kröger N, Holler E, Kobbe G, Bornhäuser M, Schwerdtfeger R, Baurmann H, et al. Allogeneic stem cell transplantation after reduced-intensity conditioning in patients with myelofibrosis: a prospective, multicenter study of the Chronic Leukemia Working Party of the European Group for Blood and Marrow Transplantation. Blood. 2009;114:5264–70.

    Article  PubMed  Google Scholar 

  6. Hasselbalch HC. Chronic inflammation as a promotor of mutagenesis in essential thrombocythemia, polycythemia vera and myelofibrosis. A human inflammation model for cancer development? Leuk Res. 2013;37:214–20.

    Article  CAS  PubMed  Google Scholar 

  7. Hasselbalch HC. Perspectives on chronic inflammation in essential thrombocythemia, polycythemia vera, and myelofibrosis: is chronic inflammation a trigger and driver of clonal evolution and development of accelerated atherosclerosis and second cancer? Blood. 2012;119:3219–25.

    Article  CAS  PubMed  Google Scholar 

  8. Tefferi A, Vaidya R, Caramazza D, Finke C, Lasho T, Pardanani A. Circulating interleukin (IL)-8, IL-2R, IL-12, and IL-15 levels are independently prognostic in primary myelofibrosis: a comprehensive cytokine profiling study. J Clin Oncol. 2011;29:1356–63.

    Article  CAS  PubMed  Google Scholar 

  9. Fleischman AG, Aichberger KJ, Luty SB, Bumm TG, Petersen CL, Doratotaj S, et al. TNFalpha facilitates clonal expansion of JAK2V617F positive cells in myeloproliferative neoplasms. Blood. 2011;118:6392–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Triviai I, Ziegler M, Bergholz U, Oler AJ, Stübig T, Prassolov V, et al. Endogenous retrovirus induces leukemia in a xenograft mouse model for primary myelofibrosis. Proc Natl Acad Sci U S A. 2014;111:8595–600.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Barbui T, Carobbio A, Finazzi G, Guglielmelli P, Salmoiraghi S, Rosti V, et al. Elevated C-reactive protein is associated with shortened leukemia-free survival in patients with myelofibrosis. Leukemia. 2013;27:2084–6.

    Article  CAS  PubMed  Google Scholar 

  12. Barbui T, Carobbio A, Finazzi G, Vannucchi AM, Barosi G, Antonioli E, et al. Inflammation and thrombosis in essential thrombocythemia and polycythemia vera: different role of C-reactive protein and pentraxin 3. Haematologica. 2011;96:315–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Tefferi A. Pathogenesis of myelofibrosis with myeloid metaplasia. J Clin Oncol. 2005;23:8520–30.

    Article  CAS  PubMed  Google Scholar 

  14. Wolf BC, Neiman RS. Myelofibrosis with myeloid metaplasia: pathophysiologic implications of the correlation between bone marrow changes and progression of splenomegaly. Blood. 1985;65:803–9.

    CAS  PubMed  Google Scholar 

  15. Kröger N, Zabelina T, Alchalby H, Stübig T, Wolschke C, Ayuk F, et al. Dynamic of bone marrow fibrosis regression predicts survival after allogeneic stem cell transplantation for myelofibrosis. Biol Blood Marrow Transplant. 2014;20:812–5.

    Article  PubMed  Google Scholar 

  16. Castro-Malaspina H, Rabellino EM, Yen A, Nachman RL, Moore MA. Human megakaryocyte stimulation of proliferation of bone marrow fibroblasts. Blood. 1981;57:781–7.

    CAS  PubMed  Google Scholar 

  17. Kuter DJ, Bain B, Mufti G, Bagg A, Hasserjian RP. Bone marrow fibrosis: pathophysiology and clinical significance of increased bone marrow stromal fibres. Br J Haematol. 2007;139:351–62.

    Article  CAS  PubMed  Google Scholar 

  18. Ferrant A, Rodhain J, Cauwe F, Cogneau M, Beckers C, Michaux JL, et al. Assessment of bone marrow and splenic erythropoiesis in myelofibrosis. Scand J Haematol. 1982;29:373–80.

    Article  CAS  PubMed  Google Scholar 

  19. Georgiades CS, Neyman EG, Francis IR, Sneider MB, Fishman EK. Typical and atypical presentations of extramedullary hemopoiesis. AJR Am J Roentgenol. 2002;179:1239–43.

    Article  PubMed  Google Scholar 

  20. Dupriez B, Morel P, Demory JL, Lai JL, Simon M, Plantier I, et al. Prognostic factors in agnogenic myeloid metaplasia: a report on 195 cases with a new scoring system. Blood. 1996;88:1013–8.

    CAS  PubMed  Google Scholar 

  21. Koch CA, Li CY, Mesa RA, Tefferi A. Nonhepatosplenic extramedullary hematopoiesis: associated diseases, pathology, clinical course, and treatment. Mayo Clin Proc. 2003;78:1223–33.

    Article  PubMed  Google Scholar 

  22. Sayle BA, Helmer 3rd RE, Birdsong BA, Balachandran S, Gardner FH. Bone-marrow imaging with indium-111 chloride in aplastic anemia and myelofibrosis: concise communication. J Nucl Med. 1982;23:121–5.

    CAS  PubMed  Google Scholar 

  23. Agool A, Glaudemans AW, Boersma HH, Dierckx RA, Vellenga E, Slart RH. Radionuclide imaging of bone marrow disorders. Eur J Nucl Med Mol Imaging. 2011;38:166–78.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Harnsberger HR, Datz FL, Knochel JQ, Taylor AT. Failure to detect extramedullary hematopoiesis during bone-marrow imaging with indium-111 or technetium-99m sulfur colloid. J Nucl Med. 1982;23:589–91.

    CAS  PubMed  Google Scholar 

  25. Derlin T, Weber C, Habermann CR, Herrmann J, Wisotzki C, Ayuk F, et al. 18F-FDG PET/CT for detection and localization of residual or recurrent disease in patients with multiple myeloma after stem cell transplantation. Eur J Nucl Med Mol Imaging. 2012;39:493–500.

    Article  PubMed  Google Scholar 

  26. Hutchings M, Loft A, Hansen M, Pedersen LM, Buhl T, Jurlander J, et al. FDG-PET after two cycles of chemotherapy predicts treatment failure and progression-free survival in Hodgkin lymphoma. Blood. 2006;107:52–9.

    Article  CAS  PubMed  Google Scholar 

  27. Meller J, Sahlmann CO, Scheel AK. 18F-FDG PET and PET/CT in fever of unknown origin. J Nucl Med. 2007;48:35–45.

    CAS  PubMed  Google Scholar 

  28. Salaun PY, Gastinne T, Bodet-Milin C, Campion L, Cambefort P, Moreau A, et al. Analysis of 18F-FDG PET diffuse bone marrow uptake and splenic uptake in staging of Hodgkin’s lymphoma: a reflection of disease infiltration or just inflammation? Eur J Nucl Med Mol Imaging. 2009;36:1813–21.

    Article  PubMed  Google Scholar 

  29. Gotthardt M, Bleeker-Rovers CP, Boerman OC, Oyen WJ. Imaging of inflammation by PET, conventional scintigraphy, and other imaging techniques. J Nucl Med. 2013;51:1937–49.

    Google Scholar 

  30. Abdel-Dayem HM, Rosen G, El-Zeftawy H, Naddaf S, Kumar M, Atay S, et al. Fluorine-18 fluorodeoxyglucose splenic uptake from extramedullary hematopoiesis after granulocyte colony-stimulating factor stimulation. Clin Nucl Med. 1999;24:319–22.

    Article  CAS  PubMed  Google Scholar 

  31. Burrell SC, Fischman AJ. Myelofibrosis on F-18 FDG PET imaging. Clin Nucl Med. 2005;30:674.

    Article  PubMed  Google Scholar 

  32. Tefferi A, Thiele J, Orazi A, Kvasnicka HM, Barbui T, Hanson CA, et al. Proposals and rationale for revision of the World Health Organization diagnostic criteria for polycythemia vera, essential thrombocythemia, and primary myelofibrosis: recommendations from an ad hoc international expert panel. Blood. 2007;110:1092–7.

    Article  CAS  PubMed  Google Scholar 

  33. Barosi G, Mesa RA, Thiele J, Cervantes F, Campbell PJ, Verstovsek S, et al. Proposed criteria for the diagnosis of post-polycythemia vera and post-essential thrombocythemia myelofibrosis: a consensus statement from the International Working Group for Myelofibrosis Research and Treatment. Leukemia. 2008;22:437–8.

    Article  CAS  PubMed  Google Scholar 

  34. Thiele J, Kvasnicka HM, Facchetti F, Franco V, van der Walt J, Orazi A. European consensus on grading bone marrow fibrosis and assessment of cellularity. Haematologica. 2005;90:1128–32.

    PubMed  Google Scholar 

  35. Prassopoulos P, Daskalogiannaki M, Raissaki M, Hatjidakis A, Gourtsoyiannis N. Determination of normal splenic volume on computed tomography in relation to age, gender and body habitus. Eur Radiol. 1997;7:246–8.

    Article  CAS  PubMed  Google Scholar 

  36. Zamagni E, Patriarca F, Nanni C, Zannetti B, Englaro E, Pezzi A, et al. Prognostic relevance of 18-F FDG PET/CT in newly diagnosed multiple myeloma patients treated with up-front autologous transplantation. Blood. 2011;118:5989–95.

    Article  CAS  PubMed  Google Scholar 

  37. Campbell PJ, Griesshammer M, Döhner K, Döhner H, Kusec R, Hasselbalch HC, et al. V617F mutation in JAK2 is associated with poorer survival in idiopathic myelofibrosis. Blood. 2006;107:2098–100.

    Article  CAS  PubMed  Google Scholar 

  38. Cervantes F, Dupriez B, Pereira A, Passamonti F, Reilly JT, Morra E, et al. New prognostic scoring system for primary myelofibrosis based on a study of the International Working Group for Myelofibrosis Research and Treatment. Blood. 2009;113:2895–901.

    Article  CAS  PubMed  Google Scholar 

  39. Hasselbalch HC, Riley CH. The mevalonate pathway as a therapeutic target in the Ph-negative chronic myeloproliferative disorders. Curr Drug Targets. 2007;8:247–56.

    Article  CAS  PubMed  Google Scholar 

Download references

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thorsten Derlin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Derlin, T., Alchalby, H., Bannas, P. et al. Assessment of bone marrow inflammation in patients with myelofibrosis: an 18F-fluorodeoxyglucose PET/CT study. Eur J Nucl Med Mol Imaging 42, 696–705 (2015). https://doi.org/10.1007/s00259-014-2983-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-014-2983-4

Keywords

Navigation