Skip to main content
Log in

Targeting post-infarct inflammation by PET imaging: comparison of 68Ga-citrate and 68Ga-DOTATATE with 18F-FDG in a mouse model

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Imaging of inflammation early after myocardial infarction (MI) is a promising approach to the guidance of novel molecular interventions that support endogenous healing processes. 18F-FDG PET has been used, but may be complicated by physiological myocyte uptake. We evaluated the potential of two alternative imaging targets: lactoferrin binding by 68Ga-citrate and somatostatin receptor binding by 68Ga-DOTATATE.

Methods

C57Bl/6 mice underwent permanent coronary artery ligation. Serial PET imaging was performed 3 – 7 days after MI using 68Ga-citrate, 68Ga-DOTATATE, or 18F-FDG with ketamine/xylazine suppression of myocyte glucose uptake. Myocardial perfusion was evaluated by 13N-ammonia PET and cardiac geometry by contrast-enhanced ECG-gated CT.

Results

Mice exhibited a perfusion defect of 30 – 40 % (of the total left ventricle) with apical anterolateral wall akinesia and thinning on day 7 after MI. 18F-FDG with ketamine/xylazine suppression demonstrated distinct uptake in the infarct region, as well as in the border zone and remote myocardium. The myocardial standardized uptake value in MI mice was significantly higher than in healthy mice under ketamine/xylazine anaesthesia (1.9 ± 0.4 vs. 1.0 ± 0.1). 68Ga images exhibited high blood pool activity with no specific myocardial uptake up to 90 min after injection (tissue-to-blood contrast 0.9). 68Ga-DOTATATE was rapidly cleared from the blood, but myocardial SUV was very low (0.10 ± 0.03).

Conclusion

Neither 68Ga nor 68Ga-DOTATATE is a useful alternative to 18F-FDG for PET imaging of myocardial inflammation after MI in mice. Among the three tested approaches, 18F-FDG with ketamine/xylazine suppression of cardiomyocyte uptake remains the most practical imaging marker of post-infarct inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mezzaroma E, Toldo S, Farkas D, Seropian IM, Van Tassell BW, Salloum FN, et al. The inflammasome promotes adverse cardiac remodeling following acute myocardial infarction in the mouse. Proc Natl Acad Sci U S A. 2011;108:19725–30. doi:10.1073/pnas.1108586108.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Swirski FK, Nahrendorf M. Leukocyte behavior in atherosclerosis, myocardial infarction, and heart failure. Science. 2013;339:161–6. doi:10.1126/science.1230719.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Kempf T, Zarbock A, Vestweber D, Wollert KC. Anti-inflammatory mechanisms and therapeutic opportunities in myocardial infarct healing. J Mol Med. 2012;90:361–9. doi:10.1007/s00109-011-0847-y.

    Article  PubMed  Google Scholar 

  4. Bengel FM, George RT, Schuleri KH, Lardo AC, Wollert KC. Image-guided therapies for myocardial repair: concepts and practical implementation. Eur Heart J Cardiovasc Imaging. 2013;14:741–51. doi:10.1093/ehjci/jet038.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Basu S, Zhuang H, Torigian DA, Rosenbaum J, Chen W, Alavi A. Functional imaging of inflammatory diseases using nuclear medicine techniques. Semin Nucl Med. 2009;39:124–45. doi:10.1053/j.semnuclmed.2008.10.006.

    Article  PubMed  Google Scholar 

  6. Rudd JH, Warburton EA, Fryer TD, Jones HA, Clark JC, Antoun N, et al. Imaging atherosclerotic plaque inflammation with [18F]-fluorodeoxyglucose positron emission tomography. Circulation. 2002;105:2708–11.

    Article  CAS  PubMed  Google Scholar 

  7. Lee WW, Marinelli B, van der Laan AM, Sena BF, Gorbatov R, Leuschner F, et al. PET/MRI of inflammation in myocardial infarction. J Am Coll Cardiol. 2012;59:153–63. doi:10.1016/j.jacc.2011.08.066.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Campian ME, Hardziyenka M, de Bruin K, van Eck-Smit BL, de Bakker JM, Verberne HJ, et al. Early inflammatory response during the development of right ventricular heart failure in a rat model. Eur J Heart Fail. 2010;12:653–8. doi:10.1093/eurjhf/hfq066.

    Article  CAS  PubMed  Google Scholar 

  9. Campian ME, Verberne HJ, Hardziyenka M, de Groot EA, van Moerkerken AF, van Eck-Smit BL, et al. Assessment of inflammation in patients with arrhythmogenic right ventricular cardiomyopathy/dysplasia. Eur J Nucl Med Mol Imaging. 2010;37:2079–85. doi:10.1007/s00259-010-1525-y.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Chen WC, Tsai KD, Chen CH, Lin MS, Chen CM, Shih CM, et al. Role of gallium-67 scintigraphy in the evaluation of occult sepsis in the medical ICU. Intern Emerg Med. 2012;7:53–8. doi:10.1007/s11739-011-0739-8.

    Article  PubMed  Google Scholar 

  11. Hofman MS, Kong G, Neels OC, Eu P, Hong E, Hicks RJ. High management impact of Ga-68 DOTATATE (GaTate) PET/CT for imaging neuroendocrine and other somatostatin expressing tumours. J Med Imaging Radiat Oncol. 2012;56:40–7. doi:10.1111/j.1754-9485.2011.02327.x.

    Article  PubMed  Google Scholar 

  12. Silvola JM, Laitinen I, Sipila HJ, Laine VJ, Leppanen P, Yla-Herttuala S, et al. Uptake of 68gallium in atherosclerotic plaques in LDLR-/-ApoB100/100 mice. EJNMMI Res. 2011;1:14. doi:10.1186/2191-219X-1-14.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Kayani I, Conry BG, Groves AM, Win T, Dickson J, Caplin M, et al. A comparison of 68Ga-DOTATATE and 18F-FDG PET/CT in pulmonary neuroendocrine tumors. J Nucl Med. 2009;50:1927–32. doi:10.2967/jnumed.109.066639.

    Article  PubMed  Google Scholar 

  14. Armani C, Catalani E, Balbarini A, Bagnoli P, Cervia D. Expression, pharmacology, and functional role of somatostatin receptor subtypes 1 and 2 in human macrophages. J Leukoc Biol. 2007;81:845–55. doi:10.1189/jlb.0606417.

    Article  CAS  PubMed  Google Scholar 

  15. Schatka I, Wollenweber T, Haense C, Brunz F, Gratz KF, Bengel FM. Peptide receptor targeted radionuclide therapy alters inflammation in atherosclerotic plaques. J Am Coll Cardiol. 2013;62:2344–5. doi:10.1016/j.jacc.2013.08.1624.

    Article  CAS  PubMed  Google Scholar 

  16. Kempf T, Zarbock A, Widera C, Butz S, Stadtmann A, Rossaint J, et al. GDF-15 is an inhibitor of leukocyte integrin activation required for survival after myocardial infarction in mice. Nat Med. 2011;17:581–8. doi:10.1038/nm.2354.

    Article  CAS  PubMed  Google Scholar 

  17. Korf-Klingebiel M, Kempf T, Schluter KD, Willenbockel C, Brod T, Heineke J, et al. Conditional transgenic expression of fibroblast growth factor 9 in the adult mouse heart reduces heart failure mortality after myocardial infarction. Circulation. 2011;123:504–14. doi:10.1161/CIRCULATIONAHA.110.989665.

    Article  CAS  PubMed  Google Scholar 

  18. White DA, Su Y, Kanellakis P, Kiriazis H, Morand EF, Bucala R, et al. Differential roles of cardiac and leukocyte derived macrophage migration inhibitory factor in inflammatory responses and cardiac remodelling post myocardial infarction. J Mol Cell Cardiol. 2014;69:32–42. doi:10.1016/j.yjmcc.2014.01.015.

    Article  CAS  PubMed  Google Scholar 

  19. Guo N, Lang L, Li W, Kiesewetter DO, Gao H, Niu G, et al. Quantitative analysis and comparison study of [18F]AlF-NOTA-PRGD2, [18F]FPPRGD2 and [68Ga]Ga-NOTA-PRGD2 using a reference tissue model. PLoS One. 2012;7:e37506. doi:10.1371/journal.pone.0037506.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Perez J, Viollet C, Doublier S, Videau C, Epelbaum J, Baud L. Somatostatin binds to murine macrophages through two distinct subsets of receptors. J Neuroimmunol. 2003;138:38–44.

    Article  CAS  PubMed  Google Scholar 

  21. Li X, Samnick S, Lapa C, Israel I, Buck AK, Kreissl MC, et al. 68Ga-DOTATATE PET/CT for the detection of inflammation of large arteries: correlation with 18F-FDG, calcium burden and risk factors. EJNMMI Res. 2012;2:52. doi:10.1186/2191-219X-2-52.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Rominger A, Saam T, Vogl E, Ubleis C, la Fougere C, Forster S, et al. In vivo imaging of macrophage activity in the coronary arteries using 68Ga-DOTATATE PET/CT: correlation with coronary calcium burden and risk factors. J Nucl Med. 2010;51:193–7. doi:10.2967/jnumed.109.070672.

    Article  PubMed  Google Scholar 

  23. Cotugno G, Aurilio M, Annunziata P, Capalbo A, Faella A, Rinaldi V, et al. Noninvasive repetitive imaging of somatostatin receptor 2 gene transfer with positron emission tomography. Hum Gene Ther. 2011;22:189–96. doi:10.1089/hum.2010.098.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Saha JK, Xia J, Grondin JM, Engle SK, Jakubowski JA. Acute hyperglycemia induced by ketamine/xylazine anesthesia in rats: mechanisms and implications for preclinical models. Exp Biol Med (Maywood). 2005;230:777–84.

    CAS  Google Scholar 

  25. Ahmed N, Kansara M, Berridge MV. Acute regulation of glucose transport in a monocyte-macrophage cell line: Glut-3 affinity for glucose is enhanced during the respiratory burst. Biochem J. 1997;327(Pt 2):369–75.

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Lumeng CN, Deyoung SM, Saltiel AR. Macrophages block insulin action in adipocytes by altering expression of signaling and glucose transport proteins. Am J Physiol Endocrinol Metab. 2007;292:E166–74. doi:10.1152/ajpendo.00284.2006.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Cheng VY, Slomka PJ, Le Meunier L, Tamarappoo BK, Nakazato R, Dey D, et al. Coronary arterial 18F-FDG uptake by fusion of PET and coronary CT angiography at sites of percutaneous stenting for acute myocardial infarction and stable coronary artery disease. J Nucl Med. 2012;53:575–83. doi:10.2967/jnumed.111.097550.

    Article  CAS  PubMed  Google Scholar 

  28. Harisankar CN, Mittal BR, Agrawal KL, Abrar ML, Bhattacharya A. Utility of high fat and low carbohydrate diet in suppressing myocardial FDG uptake. J Nucl Cardiol. 2011;18:926–36. doi:10.1007/s12350-011-9422-8.

    Article  PubMed  Google Scholar 

  29. Roivainen A, Jalkanen S, Nanni C. Gallium-labelled peptides for imaging of inflammation. Eur J Nucl Med Mol Imaging. 2012;39 Suppl 1:S68–77. doi:10.1007/s00259-011-1987-6.

    Article  PubMed  Google Scholar 

  30. Saraste A, Laitinen I, Weidl E, Wildgruber M, Weber AW, Nekolla SG, et al. Diet intervention reduces uptake of alphavbeta3 integrin-targeted PET tracer 18F-galacto-RGD in mouse atherosclerotic plaques. J Nucl Cardiol. 2012;19:775–84. doi:10.1007/s12350-012-9554-5.

    Article  PubMed  Google Scholar 

  31. Razavian M, Tavakoli S, Zhang J, Nie L, Dobrucki LW, Sinusas AJ, et al. Atherosclerosis plaque heterogeneity and response to therapy detected by in vivo molecular imaging of matrix metalloproteinase activation. J Nucl Med. 2011;52:1795–802. doi:10.2967/jnumed.111.092379.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the preclinical molecular imaging and radiochemistry staff of the Department of Nuclear Medicine for their technical assistance. J.T.T. is supported by fellowships from the German Academic Exchange Service (DAAD) and the Canadian Institutes of Health Research. This project was partially funded by the REBIRTH-2 Cluster of Excellence and by EU FP7 grant PIRG08-GA-2010-276889 (F.M.B.).

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank M. Bengel.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Suppl Fig 1

Experimental design and imaging protocols. (a) Experimental timeline with MI at day 0 followed by PET imaging at 3, 5 and 7 days post-MI. Mice were randomized and serially imaged with different sequential tracers as indicated horizontally (i.e. a different tracer used in each individual subject for each time point). (b) Imaging protocols for 68Ga-citrate and 68Ga-DOTATATE and (c) 18F-FDG acquisitions (acq) and 57Co transmission scans (Tx) under isoflurane (isofl) or ketamine/xylazine (KX) anaesthesia. 13N-Ammonia (NH3) PET scans and contrast CT imaging was performed only on day 7 post-MI. (PPTX 69 kb).

Suppl Fig 2

Late frame myocardial 68Ga-citrate distribution. (a) Representative parametric SUV-scaled 68Ga-citrate transaxial, coronal, and sagittal myocardial images obtained at 60-90 min, 120-150 min, and 180-210 min after injection in healthy control mice. (b) Semi-quantitative analysis of whole left ventricle myocardium and left atrial cavity (blood pool) SUV in late frames demonstrates persistence in blood pool over 3h after injection. (PPTX 1386 kb)

Suppl Fig 3

Early frame myocardial 68Ga-DOTATATE distribution. (a) Representative transaxial, coronal, and sagittal myocardial image at 7-10 min after injection demonstrates low myocardial activity early after tracer injection in a mouse 3 days post-MI. (b) Semi-quantitative analysis of whole myocardium and blood pool activity at 7-10 min after injection. (c) Early frame time-activity curves of kidney and urinary bladder demonstrate rapid renal clearance of 68Ga-DOTATATE in post-MI mice. (PPTX 478 kb)

Suppl Fig 4

Whole body distribution of 18F-FDG in healthy and post-infarct mice under ketamine/xylazine anaesthesia. Representative 18F-FDG images; left, anterior 3D PET/CT maximum intensity projection in healthy control mice under isoflurane or ketamine-xylazine (KX) anaesthesia; right, parametric myocardial images in healthy mice under isoflurane or with suppression of cardiomyocyte uptake by KX. (PPTX 1380 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thackeray, J.T., Bankstahl, J.P., Wang, Y. et al. Targeting post-infarct inflammation by PET imaging: comparison of 68Ga-citrate and 68Ga-DOTATATE with 18F-FDG in a mouse model. Eur J Nucl Med Mol Imaging 42, 317–327 (2015). https://doi.org/10.1007/s00259-014-2884-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-014-2884-6

Keywords

Navigation