Skip to main content

Advertisement

Log in

18F-FDG PET-CT uptake is a feature of both normal diameter and aneurysmal aortic wall and is not related to aneurysm size

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Aortic metabolic activity is suggested to correlate with presence and progression of aneurysmal disease, but has been inadequately studied. This study investigates the 2-[18F] fluoro-2-deoxy-D-glucose (18F-FDG) uptake in a population of infra-renal abdominal aortic aneurysms (AAA), compared to a matched non-aneurysmal control group.

Methods

The Positron Emission Tomography – Computed Tomography (PET/CT) database was searched for infra-renal AAA. Exclusion criteria were prior repair, vasculitis, and saccular/mycotic thoracic or thoraco-abdominal aneurysms. Matching of 159 non-aneurysmal (<3 cm diameter) controls from the same population was assessed. Infra-renal aortic wall FDG uptake was assessed using visual analysis; maximum standardized uptake value (SUVmax) and target to background mediastinal blood pool ratio (TBR) were documented. Predictors of FDG uptake (age, sex, aortic diameter, hypertension, statin use, and diabetes) were assessed using univariate analysis. Follow-up questionnaires were sent to referring clinicians.

Results

Aneurysms (n = 151) and controls (n = 159) were matched (p > 0.05) for age, sex, diabetes, hypertension, smoking status, statin use, and indication for PET/CT. Median aneurysm diameter was 5.0 cm (range 3.2–10.4). On visual analysis there was no significant difference in the overall numbers with increased visual uptake 24 % (36/151) in the aneurysm group vs. 19 % (30/159) in the controls, p = ns. SUVmax was slightly lower in the aneurysm group vs. controls (mean (2 SD) 1.75(0.79) vs. 1.84(0.58), p = 0.02). However there was no difference in TBR between the AAA group and controls (mean (2 SD) 1.03 (0.46) vs. 1.05(0.31), p = 0.36). During a median 18 (interquartile range 8–35) months’ follow-up 20 were repaired and four were confirmed ruptured.

Conclusions

The level of metabolic activity as assessed by 18F-FDG PET/CT in infra-renal AAA does not correlate with aortic size and does not differ between aneurysms and matched controls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Nordon IM, Hinchliffe RJ, Loftus IM, Thompson MM. Pathophysiology and epidemiology of abdominal aortic aneurysms. Nat Rev Cardiol. 2011;8:92–102.

    Article  PubMed  Google Scholar 

  2. The UK Small Aneurysm Trial Participants.Mortality results for randomised controlled trial of early elective surgery or ultrasonographic surveillance for small abdominal aortic aneurysms. Lancet 1998;352:1649–55.

  3. Brady AR, Thompson SG, Fowkes FG, Greenhalgh RM, Powell JT. Abdominal aortic aneurysm expansion: risk factors and time intervals for surveillance. Circulation. 2004;110:16–21.

    Article  PubMed  Google Scholar 

  4. Chaikof EL, Brewster DC, Dalman RL, Makaroun MS, Illig KA, Sicard GA, et al. SVS practice guidelines for the care of patients with an abdominal aortic aneurysm: executive summary. J Vasc Surg. 2009;50:880–96.

    Article  PubMed  Google Scholar 

  5. Moll FL, Powell JT, Fraedrich G, Verzini F, Haulon S, Waltham M, et al. Management of abdominal aortic aneurysms clinical practice guidelines of the European society for vascular surgery. Eur J Vasc Endovasc Surg. 2011;41 Suppl 1:S1–S58.

    Article  PubMed  Google Scholar 

  6. Scott RA, Tisi PV, Ashton HA, Allen DR. Abdominal aortic aneurysm rupture rates: a 7-year follow-up of the entire abdominal aortic aneurysm population detected by screening. J Vasc Surg. 1998;28:124–8.

    Article  CAS  PubMed  Google Scholar 

  7. Sweeting MJ, Thompson SG, Brown LC, Powell JT. Meta-analysis of individual patient data to examine factors affecting growth and rupture of small abdominal aortic aneurysms. Br J Surg. 2012;99:655–65.

    Article  CAS  PubMed  Google Scholar 

  8. Choke E, Cockerill G, Wilson WR, Sayed S, Dawson J, Loftus I, et al. A review of biological factors implicated in abdominal aortic aneurysm rupture. Eur J Vasc Endovasc Surg. 2005;30:227–44.

    Article  CAS  PubMed  Google Scholar 

  9. Brown LC, Powell JT. Risk factors for aneurysm rupture in patients kept under ultrasound surveillance. UK Small Aneurysm Trial Participants. Ann Surg. 1999;230:289–96.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Rudd JH, Warburton EA, Fryer TD, Jones HA, Clark JC, Antoun N, et al. Imaging atherosclerotic plaque inflammation with [18F]-fluorodeoxyglucose positron emission tomography. Circulation. 2002;105:2708–11.

    Article  CAS  PubMed  Google Scholar 

  11. Reeps C, Essler M, Pelisek J, Seidl S, Eckstein HH, Krause BJ. Increased 18F-fluorodeoxyglucose uptake in abdominal aortic aneurysms in positron emission/computed tomography is associated with inflammation, aortic wall instability, and acute symptoms. J Vasc Surg. 2008;48:417–23.

    Article  PubMed  Google Scholar 

  12. Courtois A, Nusgens BV, Hustinx R, Namur G, Gomez P, Somja J, et al. 18F-FDG uptake assessed by PET/CT in abdominal aortic aneurysms is associated with cellular and molecular alterations prefacing wall deterioration and rupture. J Nucl Med. 2013;54:1740–7.

    Article  CAS  PubMed  Google Scholar 

  13. Sakalihasan N, Hustinx R, Limet R. Contribution of PET scanning to the evaluation of abdominal aortic aneurysm. Semin Vasc Surg. 2004;17:144–53.

    Article  PubMed  Google Scholar 

  14. Sakalihasan N, Van DH, Gomez P, Rigo P, Lapiere CM, Nusgens B, et al. Positron emission tomography (PET) evaluation of abdominal aortic aneurysm (AAA). Eur J Vasc Endovasc Surg. 2002;23:431–6.

    Article  CAS  PubMed  Google Scholar 

  15. Truijers M, Kurvers HA, Bredie SJ, Oyen WJ, Blankensteijn JD. In vivo imaging of abdominal aortic aneurysms: increased FDG uptake suggests inflammation in the aneurysm wall. J Endovasc Ther. 2008;15:462–7.

    Article  PubMed  Google Scholar 

  16. Kotze CW, Menezes LJ, Endozo R, Groves AM, Ell PJ, Yusuf SW. Increased metabolic activity in abdominal aortic aneurysm detected by 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT). Eur J Vasc Endovasc Surg. 2009;38:93–9.

    Article  CAS  PubMed  Google Scholar 

  17. Kotze CW, Groves AM, Menezes LJ, Harvey R, Endozo R, Kayani IA, et al. What is the relationship between (1)(8)F-FDG aortic aneurysm uptake on PET/CT and future growth rate? Eur J Nucl Med Mol Imaging. 2011;38:1493–9.

    Article  PubMed  Google Scholar 

  18. Marini C, Morbelli S, Armonino R, Spinella G, Riondato M, Massollo M, et al. Direct relationship between cell density and FDG uptake in asymptomatic aortic aneurysm close to surgical threshold: an in vivo and in vitro study. Eur J Nucl Med Mol Imaging. 2012;39:91–101.

    Article  PubMed  Google Scholar 

  19. Tegler G, Ericson K, Sorensen J, Bjorck M, Wanhainen A. Inflammation in the walls of asymptomatic abdominal aortic aneurysms is not associated with increased metabolic activity detectable by 18-fluorodeoxglucose positron-emission tomography. J Vasc Surg. 2012;56:802–7.

    Article  PubMed  Google Scholar 

  20. Nchimi A, Cheramy-Bien JP, Gasser TC, Namur G, Gomez P, Seidel L, et al. Multifactorial Relationship Between 18F-fluoro-deoxy-glucose Positron Emission Tomography Signaling and Biomechanical Properties in Unruptured Aortic Aneurysms. Circ Cardiovasc Imaging. 2014;7:82–91.

    Article  PubMed  Google Scholar 

  21. Boellaard R. Standards for PET image acquisition and quantitative data analysis. J Nucl Med. 2009;50 Suppl 1:11S–20S.

    Article  CAS  PubMed  Google Scholar 

  22. Rominger A, Saam T, Wolpers S, Cyran CC, Schmidt M, Foerster S, et al. 18F-FDG PET/CT identifies patients at risk for future vascular events in an otherwise asymptomatic cohort with neoplastic disease. J Nucl Med. 2009;50:1611–20.

    Article  PubMed  Google Scholar 

  23. Rudd JH, Myers KS, Bansilal S, Machac J, Pinto CA, Tong C, et al. Atherosclerosis inflammation imaging with 18F-FDG PET: carotid, iliac, and femoral uptake reproducibility, quantification methods, and recommendations. J Nucl Med. 2008;49:871–8.

    Article  PubMed  Google Scholar 

  24. Xu XY, Borghi A, Nchimi A, Leung J, Gomez P, Cheng Z, et al. High levels of 18F-FDG uptake in aortic aneurysm wall are associated with high wall stress. Eur J Vasc Endovasc Surg. 2010;39:295–301.

    Article  CAS  PubMed  Google Scholar 

  25. Meignan M, Gallamini A, Meignan M, Gallamini A, Haioun C. Report on the first international workshop on interim-PET-scan in lymphoma. Leuk Lymphoma. 2009;50:1257–60.

    Article  PubMed  Google Scholar 

  26. Paquet N, Albert A, Foidart J, Hustinx R. Within-patient variability of (18)F-FDG: standardized uptake values in normal tissues. J Nucl Med. 2004;45:784–8.

    CAS  PubMed  Google Scholar 

  27. Bural GG, Torigian DA, Chamroonrat W, Houseni M, Chen W, Basu S, et al. FDG-PET is an effective imaging modality to detect and quantify age-related atherosclerosis in large arteries. Eur J Nucl Med Mol Imaging. 2008;35:562–9.

    Article  PubMed  Google Scholar 

  28. Reeps C, Bundschuh RA, Pellisek J, Herz M, van Marwick S, Schwaiger M, et al. Quantitative assessment of glucose metabolism in the vessel wall of abdominal aortic aneurysms: correlation with histology and role of partial volume correction. Int J Cardiovasc Imaging. 2013;29:505–12.

    Article  PubMed  Google Scholar 

  29. Rudd JH, Myers KS, Bansilal S, Machac J, Rafique A, Farkouh M, et al. (18)Fluorodeoxyglucose positron emission tomography imaging of atherosclerotic plaque inflammation is highly reproducible: implications for atherosclerosis therapy trials. J Am Coll Cardiol. 2007;50:892–6.

    Article  PubMed  Google Scholar 

  30. Wahl RL, Jacene H, Kasamon Y, Lodge MA. From RECIST to PERCIST: evolving considerations for PET response criteria in solid tumors. J Nucl Med. 2009;50 Suppl 1:122S–50S.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tara D. Barwick.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 38 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barwick, T.D., Lyons, O.T.A., Mikhaeel, N.G. et al. 18F-FDG PET-CT uptake is a feature of both normal diameter and aneurysmal aortic wall and is not related to aneurysm size. Eur J Nucl Med Mol Imaging 41, 2310–2318 (2014). https://doi.org/10.1007/s00259-014-2865-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-014-2865-9

Keywords

Navigation