Skip to main content

Advertisement

Log in

Astrocytosis measured by 11C-deprenyl PET correlates with decrease in gray matter density in the parahippocampus of prodromal Alzheimer’s patients

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

The Alzheimer’s disease (AD) pathology is characterized by fibrillar amyloid deposits and neurofibrillary tangles, as well as the activation of astrocytosis, microglia activation, atrophy, dysfunctional synapse, and cognitive impairments. The aim of this study was to test the hypothesis that astrocytosis is correlated with reduced gray matter density in prodromal AD.

Methods

Twenty patients with AD or mild cognitive impairment (MCI) underwent multi-tracer positron emission tomography (PET) studies with 11C-Pittsburgh compound B (11C-PIB), 18 F-Fluorodeoxyglucose (18 F-FDG), and 11C-deuterium-L-deprenyl (11C-DED) PET imaging, as well as magnetic resonance imaging (MRI) scanning, cerebrospinal fluid (CSF) biomarker analysis, and neuropsychological assessments. The parahippocampus was selected as a region of interest, and each value was calculated for four different imaging modalities. Correlation analysis was applied between DED slope values and gray matter (GM) densities by MRI. To further explore possible relationships, correlation analyses were performed between the different variables, including the CSF biomarker.

Results

A significant negative correlation was obtained between DED slope values and GM density in the parahippocampus in PIB-positive (PIB + ve) MCI patients (p = 0.025) (prodromal AD). Furthermore, in exploratory analyses, a positive correlation was observed between PIB-PET retention and DED binding in AD patients (p = 0.014), and a negative correlation was observed between PIB retention and CSF Aβ42 levels in MCI patients (p = 0.021), while the GM density and CSF total tau levels were negatively correlated in both PIB + ve MCI (p = 0.002) and MCI patients (p = 0.001). No significant correlation was observed with FDG-PET and with any of the other PET, MRI, or CSF biomarkers.

Conclusions

High astrocytosis levels in the parahippocampus of PIB + ve MCI (prodromal AD) patients suggest an early preclinical influence on cellular tissue loss. The lack of correlation between astrocytosis and CSF tau levels, and a positive correlation between astrocytosis and fibrillar amyloid deposition in clinical demented AD together indicate that parahippocampal astrocytosis might have some causality within the amyloid pathology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Streit WJ, Braak H, Xue QS, Bechmann I. Dystrophic (senescent) rather than activated microglial cells are associated with tau pathology and likely precede neurodegeneration in Alzheimer’s disease. Acta Neuropathol. 2009;118:475–85. doi:10.1007/s00401-009-0556-6.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Verkhratsky A, Olabarria M, Noristani HN, Yeh CY, Rodriguez JJ. Astrocytes in Alzheimer’s disease. Neurotherapeutics. 2010;7:399–412. doi:10.1016/j.nurt.2010.05.017.

    Article  PubMed  CAS  Google Scholar 

  3. Saura J, Luque JM, Cesura AM, Da Prada M, Chan-Palay V, Huber G, et al. Increased monoamine oxidase B activity in plaque-associated astrocytes of Alzheimer brains revealed by quantitative enzyme radioautography. Neuroscience. 1994;62:15–30.

    Article  PubMed  CAS  Google Scholar 

  4. Saura J, Bleuel Z, Ulrich J, Mendelowitsch A, Chen K, Shih JC. Molecular neuroanatomy of human monoamine oxidases A and B revealed by quantitative enzyme radioautography and in situ hybridization histochemistry. Neuroscience. 1996;70:755–74. doi:10.1016/S0306-4522(96)83013-2.

    Article  PubMed  CAS  Google Scholar 

  5. Fowler JS, Logan J, Volkow ND, Wang GJ. Translational neuroimaging: positron emission tomography studies of monoamine oxidase. Mol Imaging Biol. 2005;7:377–87. doi:10.1007/s11307-005-0016-1.

    Article  PubMed  Google Scholar 

  6. Fowler JS, MacGregor RR, Wolf AP, Arnett CD, Dewey SL, Schlyer D, et al. Mapping human brain monoamine oxidase A and B with 11C-labeled suicide inactivators and PET. Science. 1987;235:481–5.

    Article  PubMed  CAS  Google Scholar 

  7. Carter SF, Scholl M, Almkvist O, Wall A, Engler H, Langstrom B. Evidence for astrocytosis in prodromal Alzheimer disease provided by 11C-deuterium-L-deprenyl: a multitracer PET paradigm combining 11C-Pittsburgh compound B and 18F-FDG. J Nucl Med. 2012;53:37–46. doi:10.2967/jnumed.110.087031.

    Article  PubMed  CAS  Google Scholar 

  8. Hirvonen J, Kailajarvi M, Haltia T, Koskimies S, Nagren K, Virsu P. Assessment of MAO-B occupancy in the brain with PET and [11C]-L-deprenyl-D2: a dose-finding study with a novel MAO-B inhibitor, EVT 301. Clin Pharmacol Ther. 2009;85:506–12. doi:10.1038/clpt.2008.241.

    Article  PubMed  CAS  Google Scholar 

  9. Santillo AF, Gambini JP, Lannfelt L, Langstrom B, Ulla-Marja L, Kilander L, et al. In vivo imaging of astrocytosis in Alzheimer’s disease: an (1) (1) C-L-deuteriodeprenyl and PIB PET study. Eur J Nucl Med Mol Imaging. 2011;38:2202–8. doi:10.1007/s00259-011-1895-9.

    Article  PubMed  Google Scholar 

  10. Sperling RA, Aisen PS, Beckett LA, Bennett DA, Craft S, Fagan AM. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7:280–92. doi:10.1016/j.jalz.2011.03.003.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Dubois B, Feldman HH, Jacova C, Cummings JL, Dekosky ST, Barberger-Gateau P. Revising the definition of Alzheimer’s disease: a new lexicon. Lancet Neurol. 2010;9:1118–27. doi:10.1016/S1474-4422(10)70223-4.

    Article  PubMed  Google Scholar 

  12. Dubois B, Feldman HH, Jacova C, Hampel H, Molinuevo JL, Blennow K. Advancing research diagnostic criteria for Alzheimer’s disease: the IWG-2 criteria. Lancet Neurol. 2014;13:614–29. doi:10.1016/S1474-4422(14)70090-0.

    Article  PubMed  Google Scholar 

  13. Bourgeat P, Chetelat G, Villemagne VL, Fripp J, Raniga P, Pike K, et al. Beta-amyloid burden in the temporal neocortex is related to hippocampal atrophy in elderly subjects without dementia. Neurology. 2010;74:121–7. doi:74/2/121 [pii] 10.1212/WNL.0b013e3181c918b5.

  14. Chetelat G, Villemagne VL, Bourgeat P, Pike KE, Jones G, Ames D, et al. Relationship between atrophy and beta-amyloid deposition in Alzheimer disease. Ann Neurol. 2010;67:317–24. doi:10.1002/ana.21955.

    PubMed  CAS  Google Scholar 

  15. Cohen AD, Price JC, Weissfeld LA, James J, Rosario BL, Bi W. Basal cerebral metabolism may modulate the cognitive effects of Abeta in mild cognitive impairment: an example of brain reserve. J Neurosci. 2009;29:14770–8. doi:10.1523/JNEUROSCI.3669-09.2009.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Edison P, Archer HA, Hinz R, Hammers A, Pavese N, Tai YF. Amyloid, hypometabolism, and cognition in Alzheimer disease: an [11C] PIB and [18F] FDG PET study. Neurology. 2007;68:501–8. doi:10.1212/01.wnl.0000244749.20056.d4.

    Article  PubMed  CAS  Google Scholar 

  17. Engler H, Forsberg A, Almkvist O, Blomquist G, Larsson E, Savitcheva I. Two-year follow-up of amyloid deposition in patients with Alzheimer’s disease. Brain. 2006;129:2856–66. doi:10.1093/brain/awl178.

    Article  PubMed  Google Scholar 

  18. Fagan AM, Head D, Shah AR, Marcus D, Mintun M, Morris JC, et al. Decreased cerebrospinal fluid Abeta (42) correlates with brain atrophy in cognitively normal elderly. Ann Neurol. 2009;65:176–83. doi:10.1002/ana.21559.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Forsberg A, Almkvist O, Engler H, Wall A, Langstrom B, Nordberg A. High PIB retention in Alzheimer’s disease is an early event with complex relationship with CSF biomarkers and functional parameters. Curr Alzheimer Res. 2010;7:56–66. doi: CAR-40 [pii].

  20. La Joie R, Perrotin A, Barre L, Hommet C, Mezenge F, Ibazizene M. Region-Specific Hierarchy between Atrophy, Hypometabolism, and beta-Amyloid (Abeta) Load in Alzheimer’s Disease Dementia. J Neurosci. 2012;32:16265–73. doi:10.1523/JNEUROSCI.2170-12.2012.

    Article  PubMed  Google Scholar 

  21. Braak H, Braak E. Neuropathological staging of Alzheimer-related changes. Acta Neuropathol. 1991;82:239–59.

    Article  PubMed  CAS  Google Scholar 

  22. Choo IH, Lee DY, Oh JS, Lee JS, Lee DS, Song IC. Posterior cingulate cortex atrophy and regional cingulum disruption in mild cognitive impairment and Alzheimer’s disease. Neurobiol Aging. 2010;31:772–9. doi:10.1016/j.neurobiolaging.2008.06.015.

    Article  PubMed  Google Scholar 

  23. Petersen RC, Smith GE, Waring SC, Ivnik RJ, Tangalos EG, Kokmen E. Mild cognitive impairment: clinical characterization and outcome. Arch Neurol. 1999;56:303–8.

    Article  PubMed  CAS  Google Scholar 

  24. Winblad B, Palmer K, Kivipelto M, Jelic V, Fratiglioni L, Wahlund LO. Mild cognitive impairment--beyond controversies, towards a consensus: report of the International Working Group on Mild Cognitive Impairment. J Intern Med. 2004;256:240–6. doi:10.1111/j.1365-2796.2004.01380.x.

    Article  PubMed  CAS  Google Scholar 

  25. McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology. 1984;34:939–44.

    Article  PubMed  CAS  Google Scholar 

  26. Hammers A, Allom R, Koepp MJ, Free SL, Myers R, Lemieux L, et al. Three-dimensional maximum probability atlas of the human brain, with particular reference to the temporal lobe. Hum Brain Mapp. 2003;19:224–47. doi:10.1002/hbm.10123.

    Article  PubMed  Google Scholar 

  27. Andreasen N, Hesse C, Davidsson P, Minthon L, Wallin A, Winblad B, et al. Cerebrospinal fluid beta-amyloid (1–42) in Alzheimer disease: differences between early- and late-onset Alzheimer disease and stability during the course of disease. Arch Neurol. 1999;56:673–80.

    Article  PubMed  CAS  Google Scholar 

  28. Blennow K, Wallin A, Agren H, Spenger C, Siegfried J, Vanmechelen E. Tau protein in cerebrospinal fluid: a biochemical marker for axonal degeneration in Alzheimer disease? Mol Chem Neuropathol. 1995;26:231–45. doi:10.1007/BF02815140.

    Article  PubMed  CAS  Google Scholar 

  29. Vanmechelen E, Vanderstichele H, Davidsson P, Van Kerschaver E, Van Der Perre B, Sjogren M, et al. Quantification of tau phosphorylated at threonine 181 in human cerebrospinal fluid: a sandwich ELISA with a synthetic phosphopeptide for standardization. Neurosci Lett. 2000;285:49–52. doi:S0304-3940 (00) 01036-3 [pii].

  30. Almkvist O, Tallberg IM. Cognitive decline from estimated premorbid status predicts neurodegeneration in Alzheimer’s disease. Neuropsychology. 2009;23:117–24. doi:10.1037/a0014074.

    Article  PubMed  Google Scholar 

  31. Bergman I, Blomberg M, Almkvist O. The importance of impaired physical health and age in normal cognitive aging. Scand J Psychol. 2007;48:115–25. doi:10.1111/j.1467-9450.2007.00594.x.

    Article  PubMed  Google Scholar 

  32. Nordberg A, Carter SF, Rinne J, Drzezga A, Brooks DJ, Vandenberghe R, et al. A European multicentre PET study of fibrillar amyloid in Alzheimer’s disease. Eur J Nucl Med Mol Imaging. 2013;40:104–14. doi:10.1007/s00259-012-2237-2.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  33. Marutle A, Gillberg PG, Bergfors A, Yu W, Ni R, Nennesmo I. (3) H-deprenyl and (3) H-PIB autoradiography show different laminar distributions of astroglia and fibrillar beta-amyloid in Alzheimer brain. J Neuroinflammation. 2013;10:90. doi:10.1186/1742-2094-10-90.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  34. Small SA, Duff K. Linking Abeta and tau in late-onset Alzheimer’s disease: a dual pathway hypothesis. Neuron. 2008;60:534–42. doi:10.1016/j.neuron.2008.11.007.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  35. Whitwell JL, Josephs KA, Murray ME, Kantarci K, Przybelski SA, Weigand SD. MRI correlates of neurofibrillary tangle pathology at autopsy: a voxel-based morphometry study. Neurology. 2008;71:743–9. doi:10.1212/01.wnl.0000324924.91351.7d.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  36. Josephs KA, Whitwell JL, Ahmed Z, Shiung MM, Weigand SD, Knopman DS, et al. Beta-amyloid burden is not associated with rates of brain atrophy. Ann Neurol. 2008;63:204–12. doi:10.1002/ana.21223.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Koistinaho M, Lin S, Wu X, Esterman M, Koger D, Hanson J. Apolipoprotein E promotes astrocyte colocalization and degradation of deposited amyloid-beta peptides. Nat Med. 2004;10:719–26. doi:10.1038/nm1058.

    Article  PubMed  CAS  Google Scholar 

  38. Nicoll JA, Weller RO. A new role for astrocytes: beta-amyloid homeostasis and degradation. Trends Mol Med. 2003;9:281–2. doi:10.1016/S1471-4914(03)00109-6.

    Article  PubMed  CAS  Google Scholar 

  39. Wyss-Coray T, Loike JD, Brionne TC, Lu E, Anankov R, Yan F. Adult mouse astrocytes degrade amyloid-beta in vitro and in situ. Nat Med. 2003;9:453–7.

    Article  PubMed  CAS  Google Scholar 

  40. Nordberg A. Molecular imaging in Alzheimer’s disease: new perspectives on biomarkers for early diagnosis and drug development. Alzheimers Res Ther. 2011;3:34. doi:10.1186/alzrt96.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  41. Nordberg A, Rinne JO, Kadir A, Langstrom B. The use of PET in Alzheimer disease. Nat Rev Neurol. 2010;6:78–87. doi:10.1038/nrneurol.2009.217.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The present article was funded by the following grants: the Swedish Research Council (project 05817), the Strategic Research Program in Neuroscience at Karolinska Institutet, the Swedish Brain Power, the Old Servants foundation, the Gun and Bertil Stohne’s foundation, the Alzheimer Foundation in Sweden, the Brain Foundation, the Regional Agreement on Medical Training and Clinical Research (ALF) between Stockholm County Council and the Karolinska Institutet, INMIND (grant agreement number 278850, resources) of the European Union’s Seventh Framework Programme for Research and Technological Development (FP7/2007-2013), and the research fund from Chosun University (K206556001-1).

Disclosure statement

None of the authors have any actual or potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agneta Nordberg.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figure 1

Correlation analysis between mean gray matter and 11C-DED slope values in the parahippocampus (A) for MCI and AD patients, (B) for MCI patients, including PIB positive (PIB + ve) and PIB negative (PIB-ve) groups and 11-PIB retention ratio and 11C-DED slope value (C) for MCI and AD patients, (D) for MCI patients. * indicates p < 0.05 by correlation analyses. (GIF 17 kb)

(GIF 17 kb)

(GIF 18 kb)

(GIF 17 kb)

High resolution image (TIFF 7944 kb)

High resolution image (TIFF 7754 kb)

High resolution image (TIFF 8967 kb)

High resolution image (TIFF 9337 kb)

Supplementary Figure 2

Correlation analyses between CSF total tau values and mean parahippocampal gray matter density (A) for MCI and AD patients, (B) for MCI patients, including PIB positive (PIB + ve) and PIB negative (PIB-ve) groups, between CSF Aβ1-42 values and parahippocampal 11C-PIB retention ratio (C) for MCI and AD patients, (D) for MCI patients. * indicates p < 0.05 by correlation analyses. (GIF 16 kb)

(GIF 17 kb)

(GIF 24 kb)

(GIF 26 kb)

High resolution image (TIFF 8127 kb)

High resolution image (TIFF 8689 kb)

High resolution image (TIFF 7845 kb)

High resolution image (TIFF 7565 kb)

Supplementary Table 1

(PDF 26 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choo, I.H., Carter, S.F., Schöll, M.L. et al. Astrocytosis measured by 11C-deprenyl PET correlates with decrease in gray matter density in the parahippocampus of prodromal Alzheimer’s patients. Eur J Nucl Med Mol Imaging 41, 2120–2126 (2014). https://doi.org/10.1007/s00259-014-2859-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-014-2859-7

Keywords

Navigation