Skip to main content
Log in

Extrastriatal binding of [123I]FP-CIT in the thalamus and pons: gender and age dependencies assessed in a European multicentre database of healthy controls

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Apart from binding to the dopamine transporter (DAT), [123I]FP-CIT shows moderate affinity for the serotonin transporter (SERT), allowing imaging of both monoamine transporters in a single imaging session in different brain areas. The aim of this study was to systematically evaluate extrastriatal binding (predominantly due to SERT) and its age and gender dependencies in a large cohort of healthy controls.

Methods

SPECT data from 103 healthy controls with well-defined criteria of normality acquired at 13 different imaging centres were analysed for extrastriatal binding using volumes of interest analysis for the thalamus and the pons. Data were examined for gender and age effects as well as for potential influence of striatal DAT radiotracer binding.

Results

Thalamic binding was significantly higher than pons binding. Partial correlations showed an influence of putaminal DAT binding on measured binding in the thalamus but not on the pons. Data showed high interindividual variation in extrastriatal binding. Significant gender effects with 31 % higher binding in women than in men were observed in the thalamus, but not in the pons. An age dependency with a decline per decade (±standard error) of 8.2 ± 1.3 % for the thalamus and 6.8 ± 2.9 % for the pons was shown.

Conclusion

The potential to evaluate extrastriatal predominant SERT binding in addition to the striatal DAT in a single imaging session was shown using a large database of [123I]FP-CIT scans in healthy controls. For both the thalamus and the pons, an age-related decline in radiotracer binding was observed. Gender effects were demonstrated for binding in the thalamus only. As a potential clinical application, the data could be used as a reference to estimate SERT occupancy in addition to nigrostriatal integrity when using [123I]FP-CIT for DAT imaging in patients treated with selective serotonin reuptake inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Booij J, Speelman JD, Horstink MW, Wolters EC. The clinical benefit of imaging striatal dopamine transporters with [123I]FP-CIT SPET in differentiating patients with presynaptic parkinsonism from those with other forms of parkinsonism. Eur J Nucl Med. 2001;28:266–72.

    Article  CAS  PubMed  Google Scholar 

  2. Benamer TS, Patterson J, Grosset DG, Booij J, de Bruin K, van Royen E, et al. Accurate differentiation of parkinsonism and essential tremor using visual assessment of [123I]-FP-CIT SPECT imaging: the [123I]-FP-CIT study group. Mov Disord. 2000;15:503–10.

    Article  CAS  PubMed  Google Scholar 

  3. Darcourt J, Booij J, Tatsch K, Varrone A, Vander Borght T, Kapucu OL, et al. EANM procedure guidelines for brain neurotransmission SPECT using (123)I-labelled dopamine transporter ligands, version 2. Eur J Nucl Med Mol Imaging. 2010;37:443–50. doi:10.1007/s00259-009-1267-x.

    Article  CAS  PubMed  Google Scholar 

  4. Walker Z, Cummings JL. [123I]N-omega-fluoropropyl-2beta-carbomethoxy-3beta-(4-iodophenyl)nortropane single-photon emission computed tomography brain imaging in the diagnosis of dementia with Lewy bodies. Alzheimers Dement. 2012;8:74–83. doi:10.1016/j.jalz.2011.08.003.

    Article  CAS  PubMed  Google Scholar 

  5. Abi-Dargham A, Gandelman MS, DeErausquin GA, Zea-Ponce Y, Zoghbi SS, Baldwin RM, et al. SPECT imaging of dopamine transporters in human brain with iodine-123-fluoroalkyl analogs of beta-CIT. J Nucl Med. 1996;37:1129–33.

    CAS  PubMed  Google Scholar 

  6. Hall H, Halldin C, Guilloteau D, Chalon S, Emond P, Besnard J, et al. Visualization of the dopamine transporter in the human brain postmortem with the new selective ligand [125I]PE2I. Neuroimage. 1999;9:108–16.

    Article  CAS  PubMed  Google Scholar 

  7. Madras BK, Gracz LM, Fahey MA, Elmaleh D, Meltzer PC, Liang AY, et al. Altropane, a SPECT or PET imaging probe for dopamine neurons: III. Human dopamine transporter in postmortem normal and Parkinson's diseased brain. Synapse. 1998;29:116–27. doi:10.1002/(SICI)1098-2396(199806)29:2<116::AID-SYN3>3.0.CO;2-A.

    Article  CAS  PubMed  Google Scholar 

  8. Varnas K, Halldin C, Hall H. Autoradiographic distribution of serotonin transporters and receptor subtypes in human brain. Hum Brain Mapp. 2004;22:246–60. doi:10.1002/hbm.20035.

    Article  PubMed  Google Scholar 

  9. Staley JK, Basile M, Flynn DD, Mash DC. Visualizing dopamine and serotonin transporters in the human brain with the potent cocaine analogue [125I]RTI-55: in vitro binding and autoradiographic characterization. J Neurochem. 1994;62:549–56.

    Article  CAS  PubMed  Google Scholar 

  10. Ziebell M, Holm-Hansen S, Thomsen G, Wagner A, Jensen P, Pinborg LH, et al. Serotonin transporters in dopamine transporter imaging: a head-to-head comparison of dopamine transporter SPECT radioligands 123I-FP-CIT and 123I-PE2I. J Nucl Med. 2010;51:1885–91. doi:10.2967/jnumed.110.078337.

    Article  PubMed  Google Scholar 

  11. Booij J, de Jong J, de Bruin K, Knol R, de Win MM, van Eck-Smit BL. Quantification of striatal dopamine transporters with 123I-FP-CIT SPECT is influenced by the selective serotonin reuptake inhibitor paroxetine: a double-blind, placebo-controlled, crossover study in healthy control subjects. J Nucl Med. 2007;48:359–66.

    CAS  PubMed  Google Scholar 

  12. Borgers AJ, Alkemade A, Van de Giessen EM, Drent ML, Booij J, Bisschop PH, et al. Imaging of serotonin transporters with [123I]FP-CIT SPECT in the human hypothalamus. EJNMMI Res. 2013;3:34. doi:10.1186/2191-219X-3-34.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Koopman KE, la Fleur SE, Fliers E, Serlie MJ, Booij J. Assessing the optimal time point for the measurement of extrastriatal serotonin transporter binding with 123I-FP-CIT SPECT in healthy, male subjects. J Nucl Med. 2012;53:1087–90. doi:10.2967/jnumed.111.102277.

    Article  CAS  PubMed  Google Scholar 

  14. Hesse S, Meyer PM, Strecker K, Barthel H, Wegner F, Oehlwein C, et al. Monoamine transporter availability in Parkinson's disease patients with or without depression. Eur J Nucl Med Mol Imaging. 2009;36:428–35. doi:10.1007/s00259-008-0979-7.

    Article  CAS  PubMed  Google Scholar 

  15. Roselli F, Pisciotta NM, Pennelli M, Aniello MS, Gigante A, De Caro MF, et al. Midbrain SERT in degenerative parkinsonisms: a 123I-FP-CIT SPECT study. Mov Disord. 2010;25:1853–9. doi:10.1002/mds.23179.

    Article  PubMed  Google Scholar 

  16. Booij J, Hemelaar TG, Speelman JD, de Bruin K, Janssen AG, van Royen EA. One-day protocol for imaging of the nigrostriatal dopaminergic pathway in Parkinson's disease by [123I]FPCIT SPECT. J Nucl Med. 1999;40:753–61.

    CAS  PubMed  Google Scholar 

  17. Rocha FL, Murad MG, Stumpf BP, Hara C, Fuzikawa C. Antidepressants for depression in Parkinson's disease: systematic review and meta-analysis. J Psychopharmacol. 2013;27:417–23. doi:10.1177/0269881113478282.

    Article  PubMed  Google Scholar 

  18. Kugaya A, Sanacora G, Staley JK, Malison RT, Bozkurt A, Khan S, et al. Brain serotonin transporter availability predicts treatment response to selective serotonin reuptake inhibitors. Biol Psychiatry. 2004;56:497–502. doi:10.1016/j.biopsych.2004.07.001.

    Article  CAS  PubMed  Google Scholar 

  19. Lanzenberger R, Kranz GS, Haeusler D, Akimova E, Savli M, Hahn A, et al. Prediction of SSRI treatment response in major depression based on serotonin transporter interplay between median raphe nucleus and projection areas. Neuroimage. 2012;63:874–81. doi:10.1016/j.neuroimage.2012.07.023.

    Article  CAS  PubMed  Google Scholar 

  20. Dahlstrom M, Ahonen A, Ebeling H, Torniainen P, Heikkila J, Moilanen I. Elevated hypothalamic/midbrain serotonin (monoamine) transporter availability in depressive drug-naive children and adolescents. Mol Psychiatry. 2000;5:514–22.

    Article  CAS  PubMed  Google Scholar 

  21. Heinz A, Ragan P, Jones DW, Hommer D, Williams W, Knable MB, et al. Reduced central serotonin transporters in alcoholism. Am J Psychiatry. 1998;155:1544–9.

    CAS  PubMed  Google Scholar 

  22. Hesse S, Barthel H, Murai T, Muller U, Muller D, Seese A, et al. Is correction for age necessary in neuroimaging studies of the central serotonin transporter? Eur J Nucl Med Mol Imaging. 2003;30:427–30. doi:10.1007/s00259-002-1044-6.

    Article  CAS  PubMed  Google Scholar 

  23. Kuikka JT, Tammela L, Bergstrom KA, Karhunen L, Uusitupa M, Tiihonen J. Effects of ageing on serotonin transporters in healthy females. Eur J Nucl Med. 2001;28:911–3.

    Article  CAS  PubMed  Google Scholar 

  24. Newberg AB, Amsterdam JD, Wintering N, Ploessl K, Swanson RL, Shults J, et al. 123I-ADAM binding to serotonin transporters in patients with major depression and healthy controls: a preliminary study. J Nucl Med. 2005;46:973–7.

    CAS  PubMed  Google Scholar 

  25. Pirker W, Asenbaum S, Hauk M, Kandlhofer S, Tauscher J, Willeit M, et al. Imaging serotonin and dopamine transporters with 123I-beta-CIT SPECT: binding kinetics and effects of normal aging. J Nucl Med. 2000;41:36–44.

    CAS  PubMed  Google Scholar 

  26. Ryding E, Lindstrom M, Bradvik B, Grabowski M, Bosson P, Traskman-Bendz L, et al. A new model for separation between brain dopamine and serotonin transporters in 123I-beta-CIT SPECT measurements: normal values and sex and age dependence. Eur J Nucl Med Mol Imaging. 2004;31:1114–8. doi:10.1007/s00259-004-1489-x.

    Article  CAS  PubMed  Google Scholar 

  27. van Dyck CH, Malison RT, Seibyl JP, Laruelle M, Klumpp H, Zoghbi SS, et al. Age-related decline in central serotonin transporter availability with [(123)I]beta-CIT SPECT. Neurobiol Aging. 2000;21:497–501.

    Article  PubMed  Google Scholar 

  28. Arranz B, Eriksson A, Mellerup E, Plenge P, Marcusson J. Effect of aging in human cortical pre- and postsynaptic serotonin binding sites. Brain Res. 1993;620:163–6.

    Article  CAS  PubMed  Google Scholar 

  29. Allen SJ, Benton JS, Goodhardt MJ, Haan EA, Sims NR, Smith CC, et al. Biochemical evidence of selective nerve cell changes in the normal ageing human and rat brain. J Neurochem. 1983;41:256–65.

    Article  CAS  PubMed  Google Scholar 

  30. Severson JA, Marcusson JO, Osterburg HH, Finch CE, Winblad B. Elevated density of [3H]imipramine binding in aged human brain. J Neurochem. 1985;45:1382–9.

    Article  CAS  PubMed  Google Scholar 

  31. Marcusson JO, Alafuzoff I, Backstrom IT, Ericson E, Gottfries CG, Winblad B. 5-Hydroxytryptamine-sensitive [3H]imipramine binding of protein nature in the human brain. II. Effect of normal aging and dementia disorders. Brain Res. 1987;425:137–45.

    Article  CAS  PubMed  Google Scholar 

  32. Andersson A, Sundman I, Marcusson J. Age stability of human brain 5-HT terminals studied with [3H]paroxetine binding. Gerontology. 1992;38:127–32.

    Article  CAS  PubMed  Google Scholar 

  33. Derogatis LR, Lipman RS, Covi L. SCL-90: an outpatient psychiatric rating scale – preliminary report. Pychopharmacol Bull. 1973;1:13–28.

    Google Scholar 

  34. Beck AT, Steer RA. Beck depression inventory–manual. San Antonio: The Psychological Association; 1987.

    Google Scholar 

  35. Varrone A, Dickson JC, Tossici-Bolt L, Sera T, Asenbaum S, Booij J, et al. European multicentre database of healthy controls for [123I]FP-CIT SPECT (ENC-DAT): age-related effects, gender differences and evaluation of different methods of analysis. Eur J Nucl Med Mol Imaging. 2013;40:213–27. doi:10.1007/s00259-012-2276-8.

    Article  CAS  PubMed  Google Scholar 

  36. Dickson JC, Tossici-Bolt L, Sera T, de Nijs R, Booij J, Bagnara MC, et al. Proposal for the standardisation of multi-centre trials in nuclear medicine imaging: prerequisites for a European 123I-FP-CIT SPECT database. Eur J Nucl Med Mol Imaging. 2012;39:188–97. doi:10.1007/s00259-011-1884-z.

    Article  PubMed  Google Scholar 

  37. Tossici-Bolt L, Dickson JC, Sera T, de Nijs R, Bagnara MC, Jonsson C, et al. Calibration of gamma camera systems for a multicentre European 123I-FP-CIT SPECT normal database. Eur J Nucl Med Mol Imaging. 2011;38:1529–40. doi:10.1007/s00259-011-1801-5.

    Article  PubMed  Google Scholar 

  38. Chang L. A method for attenuation correction in radionuclide computed tomography. IEEE Trans Nucl Sci. 1978;21:638–43.

    Article  Google Scholar 

  39. Willowson K, Bailey D, Schembri G, Baldock C. CT-based quantitative SPECT for the radionuclide 201Tl: experimental validation and a standardized uptake value for brain tumour patients. Cancer Imaging. 2012;12:31–40.

    Article  PubMed Central  PubMed  Google Scholar 

  40. Sohlberg A, Watabe H, Iida H. Acceleration of Monte Carlo-based scatter compensation for cardiac SPECT. Phys Med Biol. 2008;53:N277–85. doi:10.1088/0031-9155/53/14/N02.

    Article  CAS  PubMed  Google Scholar 

  41. Sohlberg A, Watabe H, Iida H. Optimal collimator design for cardiac SPECT when resolution recovery is applied in statistical reconstruction. J Nucl Med. 2007;48 Suppl 2:721P.

  42. Collins DL, Neelin P, Peters TM, Evans AC. Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space. J Comput Assist Tomogr. 1994;18:192–205.

    Article  CAS  PubMed  Google Scholar 

  43. Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage. 2002;15:273–89. doi:10.1006/nimg.2001.0978.

    Article  CAS  PubMed  Google Scholar 

  44. Laruelle M, Slifstein M, Huang Y. Relationships between radiotracer properties and image quality in molecular imaging of the brain with positron emission tomography. Mol Imaging Biol. 2003;5:363–75.

    Article  PubMed  Google Scholar 

  45. Backstrom I, Bergstrom M, Marcusson J. High affinity [3H]paroxetine binding to serotonin uptake sites in human brain tissue. Brain Res. 1989;486:261–8.

    Article  CAS  PubMed  Google Scholar 

  46. De Keyser J, De Backer JP, Ebinger G, Vauquelin G. [3H]GBR 12935 binding to dopamine uptake sites in the human brain. J Neurochem. 1989;53:1400–4.

    Article  PubMed  Google Scholar 

  47. Kupers R, Frokjaer VG, Erritzoe D, Naert A, Budtz-Joergensen E, Nielsen FA, et al. Serotonin transporter binding in the hypothalamus correlates negatively with tonic heat pain ratings in healthy subjects: a [11C]DASB PET study. Neuroimage. 2011;54:1336–43. doi:10.1016/j.neuroimage.2010.09.010.

    Article  PubMed  Google Scholar 

  48. Chou YH, Yang BH, Chung MY, Chen SP, Su TP, Chen CC, et al. Imaging the serotonin transporter using (123)I-ADAM in the human brain. Psychiatry Res. 2009;172:38–43. doi:10.1016/j.pscychresns.2008.12.006.

    Article  CAS  PubMed  Google Scholar 

  49. van de Giessen E, Booij J. The SPECT tracer [123I]ADAM binds selectively to serotonin transporters: a double-blind, placebo-controlled study in healthy young men. Eur J Nucl Med Mol Imaging. 2010;37:1507–11. doi:10.1007/s00259-010-1424-2.

    Article  PubMed Central  PubMed  Google Scholar 

  50. Koch W, Schaaff N, Popperl G, Mulert C, Juckel G, Reicherzer M, et al. [I-123]ADAM and SPECT in patients with borderline personality disorder and healthy control subjects. J Psychiatry Neurosci. 2007;32:234–40.

    PubMed Central  PubMed  Google Scholar 

  51. Du Y, Tsui BM, Frey EC. Model-based compensation for quantitative 123I brain SPECT imaging. Phys Med Biol. 2006;51:1269–82. doi:10.1088/0031-9155/51/5/016.

    Article  PubMed  Google Scholar 

  52. Sun J, Xu J, Cairns NJ, Perlmutter JS, Mach RH. Dopamine D1, D2, D3 receptors, vesicular monoamine transporter type-2 (VMAT2) and dopamine transporter (DAT) densities in aged human brain. PLoS One. 2012;7:e49483. doi:10.1371/journal.pone.0049483.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Staley JK, Krishnan-Sarin S, Zoghbi S, Tamagnan G, Fujita M, Seibyl JP, et al. Sex differences in [123I]beta-CIT SPECT measures of dopamine and serotonin transporter availability in healthy smokers and nonsmokers. Synapse. 2001;41:275–84. doi:10.1002/syn.1084.

    Article  CAS  PubMed  Google Scholar 

  54. Lavalaye J, Booij J, Reneman L, Habraken JB, van Royen EA. Effect of age and gender on dopamine transporter imaging with [123I]FP-CIT SPET in healthy volunteers. Eur J Nucl Med. 2000;27:867–9.

    Article  CAS  PubMed  Google Scholar 

  55. Amir S, Robinson B, Ratovitski T, Rea MA, Stewart J, Simantov R. A role for serotonin in the circadian system revealed by the distribution of serotonin transporter and light-induced Fos immunoreactivity in the suprachiasmatic nucleus and intergeniculate leaflet. Neuroscience. 1998;84:1059–73.

    Article  CAS  PubMed  Google Scholar 

  56. Buchert R, Schulze O, Wilke F, Berding G, Thomasius R, Petersen K, et al. Is correction for age necessary in SPECT or PET of the central serotonin transporter in young, healthy adults? J Nucl Med. 2006;47:38–42.

    CAS  PubMed  Google Scholar 

  57. Sanchez MG, Morissette M, Di Paolo T. Oestradiol modulation of serotonin reuptake transporter and serotonin metabolism in the brain of monkeys. J Neuroendocrinol. 2013;25:560–9. doi:10.1111/jne.12034.

    Article  CAS  PubMed  Google Scholar 

  58. Volkow ND, Fowler JS, Wang GJ, Logan J, Schlyer D, MacGregor R, et al. Decreased dopamine transporters with age in healthy human subjects. Ann Neurol. 1994;36:237–9.

    Article  CAS  PubMed  Google Scholar 

  59. De Keyser J, Ebinger G, Vauquelin G. Age-related changes in the human nigrostriatal dopaminergic system. Ann Neurol. 1990;27:157–61.

    Article  PubMed  Google Scholar 

  60. Mozley PD, Acton PD, Barraclough ED, Plossl K, Gur RC, Alavi A, et al. Effects of age on dopamine transporters in healthy humans. J Nucl Med. 1999;40:1812–7.

    CAS  PubMed  Google Scholar 

  61. Schwarz J, Storch A, Koch W, Pogarell O, Radau PE, Tatsch K. Loss of dopamine transporter binding in Parkinson's disease follows a single exponential rather than linear decline. J Nucl Med. 2004;45:1694–7.

    CAS  PubMed  Google Scholar 

  62. Bannon MJ, Whitty CJ. Age-related and regional differences in dopamine transporter mRNA expression in human midbrain. Neurology. 1997;48:969–77.

    Article  CAS  PubMed  Google Scholar 

  63. Booij J, de Win MM. Brain kinetics of the new selective serotonin transporter tracer [123I]ADAM in healthy young adults. Nucl Med Biol. 2006;33:185–91. doi:10.1016/j.nucmedbio.2005.10.005.

    Article  CAS  PubMed  Google Scholar 

  64. Lee NJ, Park IS, Koh I, Jung TW, Rhyu IJ. No volume difference of medulla oblongata between young and old Korean people. Brain Res. 2009;1276:77–82. doi:10.1016/j.brainres.2009.04.027.

    Article  CAS  PubMed  Google Scholar 

  65. Raz N, Gunning-Dixon F, Head D, Williamson A, Acker JD. Age and sex differences in the cerebellum and the ventral pons: a prospective MR study of healthy adults. AJNR Am J Neuroradiol. 2001;22:1161–7.

    CAS  PubMed  Google Scholar 

  66. Shioe K, Ichimiya T, Suhara T, Takano A, Sudo Y, Yasuno F, et al. No association between genotype of the promoter region of serotonin transporter gene and serotonin transporter binding in human brain measured by PET. Synapse. 2003;48:184–8. doi:10.1002/syn.10204.

    Article  CAS  PubMed  Google Scholar 

  67. Laruelle M, Vanisberg MA, Maloteaux JM. Regional and subcellular localization in human brain of [3H]paroxetine binding, a marker of serotonin uptake sites. Biol Psychiatry. 1988;24:299–309.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The participating centres thank GE Healthcare and the German Parkinson Association for their financial contribution to this study, ABX-CRO for managing the network activities and the Executive Committee of the EANM for establishing EANM Research Ltd. (EARL) as an administrative framework for this project.

The authors also thank the personnel of each Nuclear Medicine Centre responsible for the quality controls and acquisition of the SPECT data.

Disclosure

Prof. Jan Booij and Koen Van Laere have acted as neuroimaging consultants for GE Healthcare in the context of [123I]FP-CIT scans.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter Koch.

Additional information

Walter Koch and Marcus Unterrainer share first authorship.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koch, W., Unterrainer, M., Xiong, G. et al. Extrastriatal binding of [123I]FP-CIT in the thalamus and pons: gender and age dependencies assessed in a European multicentre database of healthy controls. Eur J Nucl Med Mol Imaging 41, 1938–1946 (2014). https://doi.org/10.1007/s00259-014-2785-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-014-2785-8

Keywords

Navigation