Skip to main content

Advertisement

Log in

Baseline metabolic tumour volume is an independent prognostic factor in Hodgkin lymphoma

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

The presence of a bulky tumour at staging in Hodgkin lymphoma (HL) is a predictor of a poor outcome. The total metabolic tumour volume at baseline (TMTV0) computed on PET may improve the evaluation of tumour burden. To explore the clinical usefulness of TMTV0, we compared the prognostic value of TMTV0, tumour bulk and interim PET response in a retrospective single-centre study.

Methods

From 2007 to 2010, 59 consecutive patients with a first diagnosis of HL were treated in our institution. PET was done at baseline (PET0) and after two cycles of chemotherapy (PET2), and treatment was not modified according to the PET2 result. TMTV0 was measured with a semiautomatic method using a 41 % SUVmax threshold. SUVmax reduction between PET0 and PET2 (ΔSUVmaxPET0-2) was also computed. Based on ROC analysis, patients with a ΔSUVmaxPET0-2 >71 % were considered good responders and a TMTV0 >225 ml was considered to represent hypermetabolic bulky disease.

Results

Median TMTV0 was 117 ml and 17 patients (29 %) had a TMTV0 >225 ml. TMTV0 (>225 ml vs. ≤225 ml) and tumour bulk (<10 cm vs. ≥10 cm) were predictive of 4-year PFS: 42 % vs. 85 % (p = 0.001) and 44 % vs. 79 % (p < 0.03), respectively. In multivariate analysis, using ΔSUVmaxPET0-2, TMTV0 and bulky tumour as covariates, only ΔSUVmaxPET0-2 (p = 0.0005, RR 6.3) and TMTV0 (p < 0.006, RR 4.4) remained independent predictors of PFS. Three prognosis groups were thus identified: ΔSUVmaxPET0-2 >71 % and TMTV0 ≤225 ml (n = 37, 63 %), ΔSUVmaxPET0-2 = <71 % or TMTV0 >225 ml (n = 17, 29 %), and ΔSUVmaxPET0-2 = <71 % and TMTV0 >225 ml (n = 5, 8 %). In these three groups the 4-year PFS rates were 92 %, 49 %, and 20 % (p < 0.0001), respectively.

Conclusion

TMTV0 is more relevant than tumour bulk for predicting the outcome in patients with HL, and adds a significant prognostic insight to interim PET response assessment. The combination of TMTV0 and ΔSUVmaxPET0-2 made it possible to identify three subsets of HL patients with different outcomes. This may guide clinicians in their choice of therapeutic strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hasenclever D, Diehl V. A prognostic score for advanced Hodgkin’s disease. International Prognostic Factors Project on Advanced Hodgkin’s Disease. N Engl J Med. 1998;339:1506–14.

    Article  CAS  PubMed  Google Scholar 

  2. Specht L, Nordentoft AM, Cold S, Clausen NT, Nissen NI. Tumor burden as the most important prognostic factor in early stage Hodgkin’s disease. Relations to other prognostic factors and implications for choice of treatment. Cancer. 1988;61:1719–27.

    Article  CAS  PubMed  Google Scholar 

  3. Willett CG, Linggood RM, Leong JC, Miketic LM, Stracher MA, Skates SJ, et al. Stage IA to IIB mediastinal Hodgkin’s disease: three-dimensional volumetric assessment of response to treatment. J Clin Oncol. 1988;6:819–24.

    CAS  PubMed  Google Scholar 

  4. Gobbi PG, Ghirardelli ML, Solcia M, Di Giulio G, Merli F, Tavecchia L, et al. Image-aided estimate of tumor burden in Hodgkin’s disease: evidence of its primary prognostic importance. J Clin Oncol. 2001;19:1388–94.

    CAS  PubMed  Google Scholar 

  5. Gobbi PG, Broglia C, Di Giulio G, Mantelli M, Anselmo P, Merli F, et al. The clinical value of tumor burden at diagnosis in Hodgkin lymphoma. Cancer. 2004;101:1824–34.

    Article  PubMed  Google Scholar 

  6. Eichenauer DA, Engert A, Dreyling M; ESMO Guidelines Working Group. Hodgkin’s lymphoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2011;22 Suppl 6:vi55–58.

    PubMed  Google Scholar 

  7. Moog F, Bangerter M, Diederichs CG, Guhlmann A, Merkle E, Frickhofen N, et al. Extranodal malignant lymphoma: detection with FDG PET versus CT. Radiology. 1998;206:475–81.

    Article  CAS  PubMed  Google Scholar 

  8. Zhang H, Wroblewski K, Liao S, Kampalath R, Penney BC, Zhang Y, et al. Prognostic value of metabolic tumor burden from (18)F-FDG PET in surgical patients with non-small-cell lung cancer. Acad Radiol. 2013;20:32–40.

    Article  CAS  PubMed  Google Scholar 

  9. Hyun SH, Choi JY, Kim K, Kim J, Shim YM, Um S-W, et al. Volume-based parameters of 18F-fluorodeoxyglucose positron emission tomography/computed tomography improve outcome prediction in early-stage non-small cell lung cancer after surgical resection. Ann Surg. 2013;257:364–70.

    Article  PubMed  Google Scholar 

  10. Shum W-Y, Ding H-J, Liang J-A, Yen K-Y, Chen S-W, Kao C-H. Use of pretreatment metabolic tumor volumes on PET-CT to predict the survival of patients with squamous cell carcinoma of esophagus treated by curative surgery. Anticancer Res. 2012;32:4163–8.

    PubMed  Google Scholar 

  11. Park GC, Kim JS, Roh J-L, Choi S-H, Nam SY, Kim SY. Prognostic value of metabolic tumor volume measured by 18F-FDG PET/CT in advanced-stage squamous cell carcinoma of the larynx and hypopharynx. Ann Oncol. 2013;24:208–14.

    Article  CAS  PubMed  Google Scholar 

  12. Song MK, Chung JS, Shin HJ, Lee SM, Lee SE, Lee HS, et al. Clinical significance of metabolic tumor volume by PET/CT in stages II and III of diffuse large B cell lymphoma without extranodal site involvement. Ann Hematol. 2012;91:697–703.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Song MK, Chung JS, Shin HJ, Moon JH, Lee JO, Lee HS, et al. Prognostic value of metabolic tumor volume on PET/CT in primary gastrointestinal diffuse large B cell lymphoma. Cancer Sci. 2012;103:477–82.

    Article  CAS  PubMed  Google Scholar 

  14. Gallamini A, Rigacci L, Merli F, Nassi L, Bosi A, Capodanno I, et al. The predictive value of positron emission tomography scanning performed after two courses of standard therapy on treatment outcome in advanced stage Hodgkin’s disease. Haematologica. 2006;91:475–81.

    PubMed  Google Scholar 

  15. Hutchings M, Barrington SF. PET/CT for therapy response assessment in lymphoma. J Nucl Med. 2009;50 Suppl 1:21S–30S.

    Article  CAS  PubMed  Google Scholar 

  16. Hutchings M, Loft A, Hansen M, Pedersen LM, Buhl T, Jurlander J, et al. FDG-PET after two cycles of chemotherapy predicts treatment failure and progression-free survival in Hodgkin lymphoma. Blood. 2006;107:52–9.

    Article  CAS  PubMed  Google Scholar 

  17. Zinzani PL, Tani M, Fanti S, Alinari L, Musuraca G, Marchi E, et al. Early positron emission tomography (PET) restaging: a predictive final response in Hodgkin’s disease patients. Ann Oncol. 2006;17:1296–300.

    Article  CAS  PubMed  Google Scholar 

  18. Gallamini A, Hutchings M, Rigacci L, Specht L, Merli F, Hansen M, et al. Early interim 2-[18F]fluoro-2-deoxy-D-glucose positron emission tomography is prognostically superior to international prognostic score in advanced-stage Hodgkin’s lymphoma: a report from a joint Italian-Danish study. J Clin Oncol. 2007;25:3746–52.

    Article  CAS  PubMed  Google Scholar 

  19. Kumar R, Maillard I, Schuster SJ, Alavi A. Utility of fluorodeoxyglucose-PET imaging in the management of patients with Hodgkin’s and non-Hodgkin’s lymphomas. Radiol Clin North Am. 2004;42:1083–100.

    Article  PubMed  Google Scholar 

  20. Connors JM. Positron emission tomography in the management of Hodgkin lymphoma. Hematol Am Soc Hematol Educ Program. 2011;2011:317–22.

    Article  Google Scholar 

  21. Rossi C, Kanoun S, Berriolo-Riedinger A, Dygai-Cochet I, Humbert O, Legouge C, et al. Interim 18F-FDG PET SUVmax reduction is superior to visual analysis in predicting outcome early in Hodgkin lymphoma patients. J Nucl Med. 2014;55:569–73.

    Article  CAS  PubMed  Google Scholar 

  22. Swerdlow S, Campo E, Harris N, Jaffe E, Pileri S, Stein H, et al. WHO classification of tumours, vol. 2. Lyon: International Agency for Research on Cancer; 2008.

    Google Scholar 

  23. Cheson BD, Pfistner B, Juweid ME, Gascoyne RD, Specht L, Horning SJ, et al. Revised response criteria for malignant lymphoma. J Clin Oncol. 2007;25:579–86.

    Article  PubMed  Google Scholar 

  24. Boellaard R, O’Doherty MJ, Weber WA, Mottaghy FM, Lonsdale MN, Stroobants SG, et al. FDG PET and PET/CT: EANM procedure guidelines for tumour PET imaging: version 1.0. Eur J Nucl Med Mol Imaging. 2010;37:181–200.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Meignan M, Sasanelli M, Casasnovas RO, Luminari S, Fioroni F, Coriani C, et al. Metabolic tumour volumes measured at staging in lymphoma: methodological evaluation on phantom experiments and patients. Eur J Nucl Med Mol Imaging. 2014. doi:10.1007/s00259-014-2705-y.

    Google Scholar 

  26. Lin C, Itti E, Haioun C, Petegnief Y, Luciani A, Dupuis J, et al. Early 18F-FDG PET for prediction of prognosis in patients with diffuse large B-cell lymphoma: SUV-based assessment versus visual analysis. J Nucl Med. 2007;48:1626–32.

    Article  PubMed  Google Scholar 

  27. Youden WJ. Index for rating diagnostic tests. Cancer. 1950;3:32–5.

    Article  CAS  PubMed  Google Scholar 

  28. Cohen J. A coefficient of agreement for nominal scales. Educ Psychol Meas. 1960;20:36–46.

    Article  Google Scholar 

  29. Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics. 1977;33:159–74.

    Article  CAS  PubMed  Google Scholar 

  30. Gobbi PG, Bassi E, Bergonzi M, Merli F, Coriani C, Iannitto E, et al. Tumour burden predicts treatment resistance in patients with early unfavourable or advanced stage Hodgkin lymphoma treated with ABVD and radiotherapy. Hematol Oncol. 2012;30:194–9

    Article  PubMed  Google Scholar 

  31. Gobbi PG, Valentino F, Bassi E, Coriani C, Merli F, Bonfante V, et al. Chemoresistance as a function of the pretherapy tumor burden and the chemotherapy regimen administered: differences observed with two current chemotherapy regimens for advanced Hodgkin lymphoma. Clin Lymphoma Myeloma Leuk. 2011;11:396–402.

    Article  PubMed  Google Scholar 

  32. Cheson BD. Role of functional imaging in the management of lymphoma. J Clin Oncol. 2011;29:1844–54.

    Article  PubMed  Google Scholar 

  33. El-Galaly TC, d’ Amore F, Mylam KJ, de Nully Brown P, Bøgsted M, Bukh A, et al. Routine bone marrow biopsy has little or no therapeutic consequence for positron emission tomography/computed tomography-staged treatment-naive patients with Hodgkin lymphoma. J Clin Oncol. 2012;30:4508–14.

    Article  PubMed  Google Scholar 

  34. Song MK, Chung JS, Lee JJ, Jeong SY, Lee SM, Hong JS, et al. Metabolic tumor volume by positron emission tomography/computed tomography as a clinical parameter to determine therapeutic modality for early stage Hodgkin’s lymphoma. Cancer Sci. 2013;104:1656–61

    Article  CAS  PubMed  Google Scholar 

  35. Tseng D, Rachakonda LP, Su Z, Advani R, Horning S, Hoppe RT, et al. Interim-treatment quantitative PET parameters predict progression and death among patients with Hodgkin’s disease. Radiat Oncol. 2012;7:5.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Lee P, Weerasuriya DK, Lavori PW, Quon A, Hara W, Maxim PG, et al. Metabolic tumor burden predicts for disease progression and death in lung cancer. Int J Radiat Oncol Biol Phys. 2007;69:328–33.

    Article  PubMed  Google Scholar 

  37. Ciernik IF, Dizendorf E, Baumert BG, Reiner B, Burger C, Davis JB, et al. Radiation treatment planning with an integrated positron emission and computer tomography (PET/CT): a feasibility study. Int J Radiat Oncol Biol Phys. 2003;57:853–63.

    Article  PubMed  Google Scholar 

  38. Nestle U, Kremp S, Schaefer-Schuler A, Sebastian-Welsch C, Hellwig D, Rübe C, et al. Comparison of different methods for delineation of 18F-FDG PET-positive tissue for target volume definition in radiotherapy of patients with non-small cell lung cancer. J Nucl Med. 2005;46:1342–8.

    PubMed  Google Scholar 

  39. Shreve PD, Anzai Y, Wahl RL. Pitfalls in oncologic diagnosis with FDG PET imaging: physiologic and benign variants. Radiographics. 1999;19:61–77.

    Article  CAS  PubMed  Google Scholar 

  40. Hatt M, Boussion N, Cheze-Le Rest C, Visvikis D, Pradier O. Metabolically active volumes automatic delineation methodologies in PET imaging: review and perspectives. Cancer Radiother. 2012;16:70–81.

    Article  CAS  PubMed  Google Scholar 

Download references

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to René-Olivier Casasnovas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanoun, S., Rossi, C., Berriolo-Riedinger, A. et al. Baseline metabolic tumour volume is an independent prognostic factor in Hodgkin lymphoma. Eur J Nucl Med Mol Imaging 41, 1735–1743 (2014). https://doi.org/10.1007/s00259-014-2783-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-014-2783-x

Keywords

Navigation