Skip to main content

Advertisement

Log in

Evaluation of cardiac sympathetic nerve activity and aldosterone suppression in patients with acute decompensated heart failure on treatment containing intravenous atrial natriuretic peptide

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Aldosterone prevents the uptake of norepinephrine in the myocardium. Atrial natriuretic peptide (ANP), a circulating hormone of cardiac origin, inhibits aldosterone synthase gene expression in cultured cardiocytes. We evaluated the effects of intravenous ANP on cardiac sympathetic nerve activity (CSNA) and aldosterone suppression in patients with acute decompensated heart failure (ADHF).

Methods

We studied 182 patients with moderate nonischemic ADHF requiring hospitalization and treated with standard therapy containing intravenous ANP and 10 age-matched normal control subjects. ANP was continuously infused for >96 h. In all subjects, delayed total defect score (TDS), heart to mediastinum ratio, and washout rate were determined by 123I-metaiodobenzylguanidine (MIBG) scintigraphy. Left ventricular (LV) end-diastolic volume, end-systolic volume, and ejection fraction were determined by echocardiography. All patients with acute heart failure (AHF) were examined once within 3 days and then 4 weeks after admission, while the control subjects were examined only once (when their hemodynamics were normal). Moreover, for 62 AHF patients, plasma aldosterone concentrations were measured at admission and 1 h before stopping ANP infusion.

Results

123I-MIBG scintigraphic and echocardiographic parameters in normal subjects were more favorable than those in patients with AHF (all p < 0.001). After treatment, all these parameters improved significantly in AHF patients (all p < 0.001). We also found significant correlation between percent changes of TDS and aldosterone concentrations (r = 0.539, p < 0.001) in 62 AHF patients.

Conclusion

The CSNA and LV performance were all improved in AHF patients. Furthermore, norepinephrine uptake of myocardium may be ameliorated by suppressing aldosterone production after standard treatment containing intravenous ANP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Thorén P, Mark AL, Morgan DA, O’Neill TP, Needleman P, Brody MJ. Activation of vagal depressor reflexes by atriopeptins inhibits renal sympathetic nerve activity. Am J Physiol 1986;251(6 Pt 2):H1252–9.

    PubMed  Google Scholar 

  2. Hirooka Y, Takeshita A, Imaizumi T, Nakamura N, Tomoike H, Nakamura M. Effects of alpha-human atrial natriuretic peptide on the interrelationship of arterial pressure, aortic nerve activity, and aortic diameter. Circ Res 1988;63(6):987–96.

    Article  CAS  PubMed  Google Scholar 

  3. Floras JS. Sympathoinhibitory effects of atrial natriuretic factor in normal humans. Circulation 1990;81(6):1860–73.

    Article  CAS  PubMed  Google Scholar 

  4. Levin ER, Gardner DG, Samson WK. Natriuretic peptides. N Engl J Med 1998;339(5):321–8.

    Article  CAS  PubMed  Google Scholar 

  5. Ito T, Yoshimura M, Nakamura S, Nakayama M, Shimasaki Y, Harada E, et al. Inhibitory effect of natriuretic peptides on aldosterone synthase gene expression in cultured neonatal rat cardiocytes. Circulation 2003;107(6):807–10.

    Article  CAS  PubMed  Google Scholar 

  6. Kitashiro S, Sugiura T, Takayama Y, Tsuka Y, Izuoka T, Tokunaga S, et al. Long-term administration of atrial natriuretic peptide in patients with acute heart failure. J Cardiovasc Pharmacol 1999;33(6):948–52.

    Article  CAS  PubMed  Google Scholar 

  7. Schofer J, Spielmann R, Schuchert A, Weber K, Schlüter M. Iodine-123 meta-iodobenzylguanidine scintigraphy: a noninvasive method to demonstrate myocardial adrenergic nervous system disintegrity in patients with idiopathic dilated cardiomyopathy. J Am Coll Cardiol 1988;12(5):1252–8.

    Article  CAS  PubMed  Google Scholar 

  8. Merlet P, Valette H, Dubois-Randé JL, Moyse D, Duboc D, Dove P, et al. Prognostic value of cardiac metaiodobenzylguanidine imaging in patients with heart failure. J Nucl Med 1992;33(4):471–7.

    CAS  PubMed  Google Scholar 

  9. Jacobson AF, Senior R, Cerqueira MD, Wong ND, Thomas GS, Lopez VA, et al. Myocardial iodine-123 meta-iodobenzylguanidine imaging and cardiac events in heart failure. Results of the prospective ADMIRE-HF (AdreView Myocardial Imaging for Risk Evaluation in Heart Failure) study. J Am Coll Cardiol 2010;55(20):2212–21.

    Article  PubMed  Google Scholar 

  10. Nakata T, Nakajima K, Yamashina S, Yamada T, Momose M, Kasama S, et al. A pooled analysis of multicenter cohort studies of (123)I-mIBG imaging of sympathetic innervation for assessment of long-term prognosis in heart failure. JACC Cardiovasc Imaging 2013;6(7):772–84.

    Article  PubMed  Google Scholar 

  11. Takeishi Y, Atsumi H, Fujiwara S, Takahashi K, Tomoike H. ACE inhibition reduces cardiac iodine-123-MIBG release in heart failure. J Nucl Med 1997;38(7):1085–9.

    CAS  PubMed  Google Scholar 

  12. Kasama S, Toyama T, Kumakura H, Takayama Y, Ichikawa S, Suzuki T, et al. Effects of perindopril on cardiac sympathetic nerve activity in patients with congestive heart failure: comparison with enalapril. Eur J Nucl Med Mol Imaging 2005;32(8):964–71.

    Article  CAS  PubMed  Google Scholar 

  13. Toyama T, Aihara Y, Iwasaki T, Hasegawa A, Suzuki T, Nagai R, et al. Cardiac sympathetic activity estimated by 123I-MIBG myocardial imaging in patients with dilated cardiomyopathy after beta-blocker or angiotensin-converting enzyme inhibitor therapy. J Nucl Med 1999;40(2):217–23.

    CAS  PubMed  Google Scholar 

  14. Yamazaki J, Muto H, Kabano T, Yamashina S, Nanjo S, Inoue A. Evaluation of beta-blocker therapy in patients with dilated cardiomyopathy–clinical meaning of iodine 123-metaiodobenzylguanidine myocardial single-photon emission computed tomography. Am Heart J 2001;141(4):645–52.

    Article  CAS  PubMed  Google Scholar 

  15. Kasama S, Toyama T, Hatori T, Sumino H, Kumakura H, Takayama Y, et al. Evaluation of cardiac sympathetic nerve activity and left ventricular remodelling in patients with dilated cardiomyopathy on the treatment containing carvedilol. Eur Heart J 2007;28(8):989–95.

    Article  CAS  PubMed  Google Scholar 

  16. Kasama S, Toyama T, Kumakura H, Takayama Y, Ichikawa S, Suzuki T, et al. Addition of valsartan to an angiotensin-converting enzyme inhibitor improves cardiac sympathetic nerve activity and left ventricular function in patients with congestive heart failure. J Nucl Med 2003;44(6):884–90.

    CAS  PubMed  Google Scholar 

  17. Kasama S, Toyama T, Kumakura H, Takayama Y, Ichikawa S, Suzuki T, et al. Effects of candesartan on cardiac sympathetic nerve activity in patients with congestive heart failure and preserved left ventricular ejection fraction. J Am Coll Cardiol 2005;45(5):661–7.

    Article  CAS  PubMed  Google Scholar 

  18. Kasama S, Toyama T, Hatori T, Hiroyuki S, Kumakura H, Takayama Y, et al. Comparative effects of valsartan with enalapril on cardiac sympathetic nerve activity and plasma brain natriuretic peptide in patients with congestive heart failure. Heart 2006;92(5):625–30.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Kasama S, Toyama T, Sumino H, Matsumoto N, Sato Y, Kumakura H, et al. Additive effects of spironolactone and candesartan on cardiac sympathetic nerve activity and left ventricular remodeling in patients with congestive heart failure. J Nucl Med 2007;48(12):1993–2000.

    Article  PubMed  Google Scholar 

  20. Kasama S, Toyama T, Sumino H, Kumakura H, Takayama Y, Minami K, et al. Effects of mineralocorticoid receptor antagonist spironolactone on cardiac sympathetic nerve activity and prognosis in patients with chronic heart failure. Int J Cardiol 2013;167:244–9.

    Article  PubMed  Google Scholar 

  21. Kasama S, Toyama T, Kumakura H, Takayama Y, Ichikawa S, Suzuki T, et al. Spironolactone improves cardiac sympathetic nerve activity and symptoms in patients with congestive heart failure. J Nucl Med 2002;43(10):1279–85.

    CAS  PubMed  Google Scholar 

  22. Kasama S, Toyama T, Kumakura H, Takayama Y, Ichikawa S, Suzuki T, et al. Effect of spironolactone on cardiac sympathetic nerve activity and left ventricular remodeling in patients with dilated cardiomyopathy. J Am Coll Cardiol 2003;41(4):574–81.

    Article  CAS  PubMed  Google Scholar 

  23. Kasama S, Toyama T, Hatori T, Sumino H, Kumakura H, Takayama Y, et al. Effects of torasemide on cardiac sympathetic nerve activity and left ventricular remodelling in patients with congestive heart failure. Heart 2006;92(10):1434–40.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Kasama S, Toyama T, Kumakura H, Takayama Y, Ishikawa T, Ichikawa S, et al. Effects of intravenous atrial natriuretic peptide on cardiac sympathetic nerve activity in patients with decompensated congestive heart failure. J Nucl Med 2004;45(7):1108–13.

    CAS  PubMed  Google Scholar 

  25. Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation 2002;105(4):539–42.

    Article  PubMed  Google Scholar 

  26. Wieland DM, Wu J, Brown LE, Mangner TJ, Swanson DP, Beierwaltes WH. Radiolabeled adrenergic neuron-blocking agents: adrenomedullary imaging with [131I]iodobenzylguanidine. J Nucl Med 1980;21(4):349–53.

    CAS  PubMed  Google Scholar 

  27. Kiyono Y, Iida Y, Kawashima H, Ogawa M, Tamaki N, Nishimura H, et al. Norepinephrine transporter density as a causative factor in alterations in MIBG myocardial uptake in NIDDM model rats. Eur J Nucl Med Mol Imaging 2002;29(8):999–1005.

    Article  CAS  PubMed  Google Scholar 

  28. Buss SJ, Backs J, Kreusser MM, Hardt SE, Maser-Gluth C, Katus HA, et al. Spironolactone preserves cardiac norepinephrine reuptake in salt-sensitive Dahl rats. Endocrinology 2006;147(5):2526–34.

    Article  CAS  PubMed  Google Scholar 

  29. Tsuneyoshi H, Nishina T, Nomoto T, Kanemitsu H, Kawakami R, Unimonh O, et al. Atrial natriuretic peptide helps prevent late remodeling after left ventricular aneurysm repair. Circulation 2004;110(11 Suppl 1):II174–9.

    PubMed  Google Scholar 

  30. Tsutamoto T, Wada A, Maeda K, Hisanaga T, Maeda Y, Fukai D, et al. Attenuation of compensation of endogenous cardiac natriuretic peptide system in chronic heart failure: prognostic role of plasma brain natriuretic peptide concentration in patients with chronic symptomatic left ventricular dysfunction. Circulation 1997;96(2):509–16.

    Article  CAS  PubMed  Google Scholar 

  31. Yasue H, Yoshimura M, Sumida H, Kikuta K, Kugiyama K, Jougasaki M, et al. Localization and mechanism of secretion of B-type natriuretic peptide in comparison with those of A-type natriuretic peptide in normal subjects and patients with heart failure. Circulation 1994;90(1):195–203.

    Article  CAS  PubMed  Google Scholar 

  32. Kohno M, Horio T, Yokokawa K, Murakawa K, Yasunari K, Akioka K, et al. Brain natriuretic peptide as a cardiac hormone in essential hypertension. Am J Med 1992;92(1):29–34.

    Article  CAS  PubMed  Google Scholar 

  33. Troughton RW, Frampton CM, Yandle TG, Espiner EA, Nicholls MG, Richards AM. Treatment of heart failure guided by plasma aminoterminal brain natriuretic peptide (N-BNP) concentrations. Lancet 2000;355(9210):1126–30.

    Article  CAS  PubMed  Google Scholar 

  34. Sezai A, Hata M, Niino T, Yoshitake I, Unosawa S, Wakui S, et al. Continuous low-dose infusion of human atrial natriuretic peptide in patients with left ventricular dysfunction undergoing coronary artery bypass grafting: the NU-HIT (Nihon University working group study of low-dose Human ANP Infusion Therapy during cardiac surgery) for left ventricular dysfunction. J Am Coll Cardiol 2010;55(17):1844–51.

    Article  CAS  PubMed  Google Scholar 

  35. Hata N, Seino Y, Tsutamoto T, Hiramitsu S, Kaneko N, Yoshikawa T, et al. Effects of carperitide on the long-term prognosis of patients with acute decompensated chronic heart failure: the PROTECT multicenter randomized controlled study. Circ J 2008;72(11):1787–93.

    Article  CAS  PubMed  Google Scholar 

  36. Mizuno Y, Yoshimura M, Yasue H, Sakamoto T, Ogawa H, Kugiyama K, et al. Aldosterone production is activated in failing ventricle in humans. Circulation 2001;103(1):72–7.

    Article  CAS  PubMed  Google Scholar 

  37. Yoshimura M, Nakamura S, Ito T, Nakayama M, Harada E, Mizuno Y, et al. Expression of aldosterone synthase gene in failing human heart: quantitative analysis using modified real-time polymerase chain reaction. J Clin Endocrinol Metab 2002;87(8):3936–40.

    Article  CAS  PubMed  Google Scholar 

  38. Harada E, Yoshimura M, Yasue H, Nakagawa O, Nakagawa M, Harada M, et al. Aldosterone induces angiotensin-converting-enzyme gene expression in cultured neonatal rat cardiocytes. Circulation 2001;104(2):137–9.

    Article  CAS  PubMed  Google Scholar 

  39. Brunner-La Rocca HP, Kaye DM, Woods RL, Hastings J, Esler MD. Effects of intravenous brain natriuretic peptide on regional sympathetic activity in patients with chronic heart failure as compared with healthy control subjects. J Am Coll Cardiol 2001;37(5):1221–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu Kasama.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kasama, S., Toyama, T., Iwasaki, T. et al. Evaluation of cardiac sympathetic nerve activity and aldosterone suppression in patients with acute decompensated heart failure on treatment containing intravenous atrial natriuretic peptide. Eur J Nucl Med Mol Imaging 41, 1683–1691 (2014). https://doi.org/10.1007/s00259-014-2754-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-014-2754-2

Keywords

Navigation