Skip to main content
Log in

The role of SPECT/CT in radioembolization of liver tumours

  • Review Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Radioembolization (RE) with 90Y microspheres is a promising catheter-based therapeutic option for patients with unresectable primary and metastatic liver tumours. Its rationale arises from the dual blood supply of liver tissue through the hepatic artery and the portal vein. Metastatic hepatic tumours measuring >3 mm derive 80 – 100 % of their blood supply from the arterial rather than the portal hepatic circulation. Typically, an angiographic evaluation combined with 99mTc-macroaggregated albumin (99mTc-MAA) scan precedes therapy to map the tumour feeding vessels as well as to avoid the inadvertent deposition of microspheres in organs other than the liver. Prior to administration of 99mTc-MAA, prophylactic coil embolization of the gastroduodenal artery is recommended to avoid extrahepatic deposition of the microspheres. SPECT/CT allows direct correlation of anatomic and functional information in patients with unresectable liver disease. SPECT/CT is recommended to assess intrahepatic distribution as well as extrahepatic gastrointestinal uptake in these patients. Pretherapeutic SPECT/CT is an important component of treatment planning including catheter positioning and dose finding. A post-therapy bremsstrahlung (BS) scan should follow RE to verify the distribution of the administered tracer. BS SPECT/CT imaging enables better localization and definition of intrahepatic and possible extrahepatic sphere distribution and to a certain degree allows posttreatment dosimetry. In this paper we address the usefulness and significance of SPECT/CT in therapy planning and therapy monitoring of RE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sangro B, Carpanese L, Cianni R, Golfieri R, Gasparini D, Ezziddin S, et al. Survival after yttrium-90 resin microsphere radioembolization of hepatocellular carcinoma across Barcelona clinic liver cancer stages: a European evaluation. Hepatology. 2011;54:868–78. doi:10.1002/hep.24451.

    Article  PubMed  Google Scholar 

  2. Salem R, Lewandowski RJ, Kulik L, Wang E, Riaz A, Ryu RK, et al. Radioembolization results in longer time-to-progression and reduced toxicity compared with chemoembolization in patients with hepatocellular carcinoma. Gastroenterology. 2011;140:497–507.e2. doi:10.1053/j.gastro.2010.10.049.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Welsh JS, Kennedy AS, Thomadsen B. Selective Internal Radiation Therapy (SIRT) for liver metastases secondary to colorectal adenocarcinoma. Int J Radiat Oncol Biol Phys. 2006;66:S62–73. doi:10.1016/j.ijrobp.2005.09.011.

    Article  CAS  PubMed  Google Scholar 

  4. Campbell AM, Bailey IH, Burton MA. Analysis of the distribution of intra-arterial microspheres in human liver following hepatic yttrium-90 microsphere therapy. Phys Med Biol. 2000;45:1023–33.

    Article  CAS  PubMed  Google Scholar 

  5. Salem R, Thurston KG. Radioembolization with 90Yttrium microspheres: a state-of-the-art brachytherapy treatment for primary and secondary liver malignancies. Part 1: technical and methodologic considerations. J Vasc Interv Radiol. 2006;17:1251–78.

    Article  PubMed  Google Scholar 

  6. Lien WM, Ackerman NB. The blood supply of experimental liver metastases. II. A microcirculatory study of the normal and tumor vessels of the liver with the use of perfused silicone rubber. Surgery. 1970;68:334–40.

    CAS  PubMed  Google Scholar 

  7. Vente MA, Nijsen JF, de Wit TC, Seppenwoolde JH, Krijger GC, Seevinck PR, et al. Clinical effects of transcatheter hepatic arterial embolization with holmium-166 poly(L-lactic acid) microspheres in healthy pigs. Eur J Nucl Med Mol Imaging. 2008;35:1259–71. doi:10.1007/s00259-008-0747-8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Lin YC, Tsai SC, Hung GU, Lee JC, Huang YS, Lin WY. Direct injection of (188)Re-microspheres in the treatment of hepatocellular carcinoma: compared with traditional percutaneous ethanol injection: an animal study. Nuklearmedizin. 2005;44:76–80. doi:10.1267/NUKL05030076.

    CAS  PubMed  Google Scholar 

  9. Liu L, Jiang Z, Teng GJ, Song JZ, Zhang DS, Guo QM, et al. Clinical and experimental study on regional administration of phosphorus 32 glass microspheres in treating hepatic carcinoma. World J Gastroenterol. 1999;5:492–505.

    CAS  PubMed  Google Scholar 

  10. Amoui M, Pirayesh E, Akhlaghpoor S, Tolooee B, Poorbeigi H, Sheibani S. Correlation between CT/MRI and bremsstrahlung SPECT of 32P after radioembolization of hepatic tumors. Iran J Radiol. 2010;7:1–5.

    Google Scholar 

  11. Ahmadzadehfar H, Biersack HJ, Ezziddin S. Radioembolization of liver tumors with yttrium-90 microspheres. Semin Nucl Med. 2010;40:105–21. doi:10.1053/j.semnuclmed.2009.11.001.

    Article  PubMed  Google Scholar 

  12. Kennedy A, Nag S, Salem R, Murthy R, McEwan AJ, Nutting C, et al. Recommendations for radioembolization of hepatic malignancies using yttrium-90 microsphere brachytherapy: a consensus panel report from the radioembolization brachytherapy oncology consortium. Int J Radiat Oncol Biol Phys. 2007;68:13–23. doi:10.1016/j.ijrobp.2006.11.060.

    Article  PubMed  Google Scholar 

  13. Murthy R, Nunez R, Szklaruk J, Erwin W, Madoff DC, Gupta S, et al. Yttrium-90 microsphere therapy for hepatic malignancy: devices, indications, technical considerations, and potential complications. Radiographics. 2005;25 Suppl 1:S41–55. doi:10.1148/rg.25si055515.

    Article  PubMed  Google Scholar 

  14. Riaz A, Lewandowski RJ, Kulik LM, Mulcahy MF, Sato KT, Ryu RK, et al. Complications following radioembolization with yttrium-90 microspheres: a comprehensive literature review. J Vasc Interv Radiol. 2009;20:1121–30. doi:10.1016/j.jvir.2009.05.030. quiz 31.

    Article  PubMed  Google Scholar 

  15. Yip D, Allen R, Ashton C, Jain S. Radiation-induced ulceration of the stomach secondary to hepatic embolization with radioactive yttrium microspheres in the treatment of metastatic colon cancer. J Gastroenterol Hepatol. 2004;19:347–9.

    Article  PubMed  Google Scholar 

  16. Carretero C, Munoz-Navas M, Betes M, Angos R, Subtil JC, Fernandez-Urien I, et al. Gastroduodenal injury after radioembolization of hepatic tumors. Am J Gastroenterol. 2007;102:1216–20. doi:10.1111/j.1572-0241.2007.01172.x.

    Article  PubMed  Google Scholar 

  17. Leung TW, Lau WY, Ho SK, Ward SC, Chow JH, Chan MS, et al. Radiation pneumonitis after selective internal radiation treatment with intraarterial 90yttrium-microspheres for inoperable hepatic tumors. Int J Radiat Oncol Biol Phys. 1995;33:919–24.

    Article  CAS  PubMed  Google Scholar 

  18. Murthy R, Brown DB, Salem R, Meranze SG, Coldwell DM, Krishnan S, et al. Gastrointestinal complications associated with hepatic arterial yttrium-90 microsphere therapy. J Vasc Interv Radiol. 2007;18:553–62. doi:10.1016/j.jvir.2007.02.002.

    Article  PubMed  Google Scholar 

  19. Salem R, Parikh P, Atassi B, Lewandowski RJ, Ryu RK, Sato KT, et al. Incidence of radiation pneumonitis after hepatic intra-arterial radiotherapy with yttrium-90 microspheres assuming uniform lung distribution. Am J Clin Oncol. 2008;31:431–8. doi:10.1097/COC.0b013e318168ef65.

    Article  PubMed  Google Scholar 

  20. Atassi B, Bangash AK, Lewandowski RJ, Ibrahim S, Kulik L, Mulcahy MF, et al. Biliary sequelae following radioembolization with yttrium-90 microspheres. J Vasc Interv Radiol. 2008;19:691–7. doi:10.1016/j.jvir.2008.01.003.

    Article  PubMed  Google Scholar 

  21. Covey AM, Brody LA, Maluccio MA, Getrajdman GI, Brown KT. Variant hepatic arterial anatomy revisited: digital subtraction angiography performed in 600 patients. Radiology. 2002;224:542–7.

    Article  PubMed  Google Scholar 

  22. Ahmadzadehfar H, Sabet A, Biermann K, Muckle M, Brockmann H, Kuhl C, et al. The significance of 99mTc-MAA SPECT/CT liver perfusion imaging in treatment planning for 90Y-microsphere selective internal radiation treatment. J Nucl Med. 2010;51:1206–12. doi:10.2967/jnumed.109.074559.

    Article  PubMed  Google Scholar 

  23. Lenoir L, Edeline J, Rolland Y, Pracht M, Raoul JL, Ardisson V, et al. Usefulness and pitfalls of MAA SPECT/CT in identifying digestive extrahepatic uptake when planning liver radioembolization. Eur J Nucl Med Mol Imaging. 2012;39:872–80. doi:10.1007/s00259-011-2033-4.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Hamami ME, Poeppel TD, Muller S, Heusner T, Bockisch A, Hilgard P, et al. SPECT/CT with 99mTc-MAA in radioembolization with 90Y microspheres in patients with hepatocellular cancer. J Nucl Med. 2009;50:688–92. doi:10.2967/jnumed.108.058347.

    Article  CAS  PubMed  Google Scholar 

  25. Denecke T, Ruhl R, Hildebrandt B, Stelter L, Grieser C, Stiepani H, et al. Planning transarterial radioembolization of colorectal liver metastases with yttrium 90 microspheres: evaluation of a sequential diagnostic approach using radiologic and nuclear medicine imaging techniques. Eur Radiol. 2008;18:892–902. doi:10.1007/s00330-007-0836-2.

    Article  PubMed  Google Scholar 

  26. Dudeck O, Wilhelmsen S, Ulrich G, Lowenthal D, Pech M, Amthauer H, et al. Effectiveness of repeat angiographic assessment in patients designated for radioembolization using yttrium-90 microspheres with initial extrahepatic accumulation of technitium-99m macroaggregated albumin: a single center’s experience. Cardiovasc Intervent Radiol. 2012;35:1083–93. doi:10.1007/s00270-011-0252-5.

    Article  PubMed  Google Scholar 

  27. Giammarile F, Bodei L, Chiesa C, Flux G, Forrer F, Kraeber-Bodere F, et al. EANM procedure guideline for the treatment of liver cancer and liver metastases with intra-arterial radioactive compounds. Eur J Nucl Med Mol Imaging. 2011;38:1393–406. doi:10.1007/s00259-011-1812-2.

    Article  CAS  PubMed  Google Scholar 

  28. Ahmadzadehfar H, Muckle M, Sabet A, Wilhelm K, Kuhl C, Biermann K, et al. The significance of bremsstrahlung SPECT/CT after yttrium-90 radioembolization treatment in the prediction of extrahepatic side effects. Eur J Nucl Med Mol Imaging. 2012;39:309–15. doi:10.1007/s00259-011-1940-8.

    Article  CAS  Google Scholar 

  29. Ahmadzadehfar H, Sabet A, Muckle M, Wilhelm K, Reichmann K, Biersack HJ, et al. 99mTc-MAA/90Y-Bremsstrahlung SPECT/CT after simultaneous Tc-MAA/90Y-microsphere injection for immediate treatment monitoring and further therapy planning for radioembolization. Eur J Nucl Med Mol Imaging. 2011;38:1281–8. doi:10.1007/s00259-011-1751-y.

    Article  PubMed  Google Scholar 

  30. Mansberg R, Sorensen N, Mansberg V, Van der Wall H. Yttrium 90 Bremsstrahlung SPECT/CT scan demonstrating areas of tracer/tumour uptake. Eur J Nucl Med Mol Imaging. 2007;34:1887. doi:10.1007/s00259-007-0536-9.

    Article  PubMed  Google Scholar 

  31. Fabbri C, Sarti G, Cremonesi M, Ferrari M, Di Dia A, Agostini M, et al. Quantitative analysis of 90Y Bremsstrahlung SPECT-CT images for application to 3D patient-specific dosimetry. Cancer Biother Radiopharm. 2009;24:145–54. doi:10.1089/cbr.2008.0543.

    Article  CAS  PubMed  Google Scholar 

  32. Strahlenschutzkommission Sd. Radionuklidtherapie mittels selektiver intraarterieller Radiotherapie (SIRT) und intravasale Bestrahlung mit offenen Radionukliden. In: Strahlenschutzkommission, editor. Bonn; 2009

  33. Sabet A, Ahmadzadehfar H, Muckle M, Haslerud T, Wilhelm K, Biersack HJ, et al. Significance of oral administration of sodium perchlorate in planning liver-directed radioembolization. J Nucl Med. 2011;52:1063–7. doi:10.2967/jnumed.110.083626.

    Article  PubMed  Google Scholar 

  34. Uliel L, Royal HD, Darcy MD, Zuckerman DA, Sharma A, Saad NE. From the angio suite to the gamma-camera: vascular mapping and 99mTc-MAA hepatic perfusion imaging before liver radioembolization – a comprehensive pictorial review. J Nucl Med. 2012;53:1736–47. doi:10.2967/jnumed.112.105361.

    Article  CAS  PubMed  Google Scholar 

  35. Van de Wiele C, Stellamans K, Brugman E, Mees G, De Spiegeleer B, D’Asseler Y, et al. Quantitative pretreatment VOI analysis of liver metastases. (99m)Tc-MAA SPECT/CT and FDG PET/CT in relation with treatment response to SIRT. Nuklearmedizin. 2013;52:21–7.

    Article  PubMed  Google Scholar 

  36. Kao YH, Tan EH, Teo TK, Ng CE, Goh SW. Imaging discordance between hepatic angiography versus Tc-99m-MAA SPECT/CT: a case series, technical discussion and clinical implications. Ann Nucl Med. 2011;25:669–76. doi:10.1007/s12149-011-0516-9.

    Article  PubMed  Google Scholar 

  37. Naymagon S, Warner RR, Patel K, Harpaz N, Machac J, Weintraub JL, et al. Gastroduodenal ulceration associated with radioembolization for the treatment of hepatic tumors: an institutional experience and review of the literature. Dig Dis Sci. 2010;55:2450–8. doi:10.1007/s10620-010-1156-y.

    Article  PubMed  Google Scholar 

  38. Lauenstein TC, Heusner TA, Hamami M, Ertle J, Schlaak JF, Gerken G, et al. Radioembolization of hepatic tumors: flow redistribution after the occlusion of intrahepatic arteries. Rofo. 2011;183:1058–64. doi:10.1055/s-0031-1281767.

    Article  CAS  PubMed  Google Scholar 

  39. McWilliams JP, Kee ST, Loh CT, Lee EW, Liu DM. Prophylactic embolization of the cystic artery before radioembolization: feasibility, safety, and outcomes. Cardiovasc Intervent Radiol. 2011;34:786–92. doi:10.1007/s00270-010-0021-x.

    Article  PubMed Central  PubMed  Google Scholar 

  40. Chernyak I, Bester L, Freund J, Richardson M. Anterior abdominal wall uptake in intrahepatic arterial brachytherapy with yttrium-90 sir spheres for hepatic malignancy. Clin Nucl Med. 2008;33:677–80. doi:10.1097/RLU.0b013e318184b44f.

    Article  PubMed  Google Scholar 

  41. Kao YH, Tan AE, Khoo LS, Lo RH, Chow PK, Goh AS. Hepatic falciform ligament Tc-99 m-macroaggregated albumin activity on SPECT/CT prior to Yttrium-90 microsphere radioembolization: prophylactic measures to prevent non-target microsphere localization via patent hepatic falciform arteries. Ann Nucl Med. 2011;25:365–9. doi:10.1007/s12149-010-0464-9.

    Article  PubMed  Google Scholar 

  42. Ahmadzadehfar H, Mohlenbruch M, Sabet A, Meyer C, Muckle M, Haslerud T, et al. Is prophylactic embolization of the hepatic falciform artery needed before radioembolization in patients with 99mTc-MAA accumulation in the anterior abdominal wall? Eur J Nucl Med Mol Imaging. 2011;38:1477–84. doi:10.1007/s00259-011-1807-z.

    Article  PubMed  Google Scholar 

  43. Barentsz MW, Vente MA, Lam MG, Smits ML, Nijsen JF, Seinstra BA, et al. Technical solutions to ensure safe yttrium-90 radioembolization in patients with initial extrahepatic deposition of (99m)technetium-albumin macroaggregates. Cardiovasc Intervent Radiol. 2011;34:1074–9. doi:10.1007/s00270-010-0088-4.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Burgmans MC, Too CW, Kao YH, Goh AS, Chow PK, Tan BS, et al. Computed tomography hepatic arteriography has a hepatic falciform artery detection rate that is much higher than that of digital subtraction angiography and 99mTc-MAA SPECT/CT: implications for planning 90Y radioembolization? Eur J Radiol. 2012;81:3979–84. doi:10.1016/j.ejrad.2012.08.007.

    Article  CAS  PubMed  Google Scholar 

  45. Baba Y, Miyazono N, Ueno K, Kanetsuki I, Nishi H, Inoue H, et al. Hepatic falciform artery. Angiographic findings in 25 patients. Acta Radiol. 2000;41:329–33.

    Article  CAS  PubMed  Google Scholar 

  46. Leong QM, Lai HK, Lo RG, Teo TK, Goh A, Chow PK. Radiation dermatitis following radioembolization for hepatocellular carcinoma: a case for prophylactic embolization of a patent falciform artery. J Vasc Interv Radiol. 2009;20:833–36. doi:10.1016/j.jvir.2009.03.011.

    Article  PubMed  Google Scholar 

  47. Garin E, Lenoir L, Rolland Y, Edeline J, Mesbah H, Laffont S, et al. Dosimetry based on 99mTc-macroaggregated albumin SPECT/CT accurately predicts tumor response and survival in hepatocellular carcinoma patients treated with 90Y-loaded glass microspheres: preliminary results. J Nucl Med. 2012;53:255–63. doi:10.2967/jnumed.111.094235.

    Article  CAS  PubMed  Google Scholar 

  48. Flamen P, Vanderlinden B, Delatte P, Ghanem G, Ameye L, Van Den Eynde M, et al. Multimodality imaging can predict the metabolic response of unresectable colorectal liver metastases to radioembolization therapy with Yttrium-90 labeled resin microspheres. Phys Med Biol. 2008;53:6591–603. doi:10.1088/0031-9155/53/22/019.

    Article  PubMed  Google Scholar 

  49. Garin E, Lenoir L, Rolland Y, Laffont S, Pracht M, Mesbah H, et al. Effectiveness of quantitative MAA SPECT/CT for the definition of vascularized hepatic volume and dosimetric approach: phantom validation and clinical preliminary results in patients with complex hepatic vascularization treated with yttrium-90-labeled microspheres. Nucl Med Commun. 2011;32:1245–55. doi:10.1097/MNM.0b013e32834a716b.

    Article  PubMed  Google Scholar 

  50. Garin E, Lenoir L, Edeline J, Laffont S, Mesbah H, Poree P, et al. Boosted selective internal radiation therapy with 90Y-loaded glass microspheres (B-SIRT) for hepatocellular carcinoma patients: a new personalized promising concept. Eur J Nucl Med Mol Imaging. 2013;40:1057–68. doi:10.1007/s00259-013-2395-x.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Salem R, Lewandowski RJ, Gates VL, Nutting CW, Murthy R, Rose SC, et al. Research reporting standards for radioembolization of hepatic malignancies. J Vasc Interv Radiol. 2011;22:265–78. doi:10.1016/j.jvir.2010.10.029.

    Article  PubMed  Google Scholar 

  52. Lau WY, Leung TW, Ho S, Chan M, Leung NW, Lin J, et al. Diagnostic pharmaco-scintigraphy with hepatic intra-arterial technetium-99m macroaggregated albumin in the determination of tumour to non-tumour uptake ratio in hepatocellular carcinoma. Br J Radiol. 1994;67:136–9.

    Article  CAS  PubMed  Google Scholar 

  53. Fox RA, Klemp PF, Egan G, Mina LL, Burton MA, Gray BN. Dose distribution following selective internal radiation therapy. Int J Radiat Oncol Biol Phys. 1991;21:463–7.

    Article  CAS  PubMed  Google Scholar 

  54. Burton MA, Gray BN, Klemp PF, Kelleher DK, Hardy N. Selective internal radiation therapy: distribution of radiation in the liver. Eur J Cancer Clin Oncol. 1989;25:1487–91.

    Article  CAS  PubMed  Google Scholar 

  55. Ho S, Lau WY, Leung TW, Chan M, Ngar YK, Johnson PJ, et al. Partition model for estimating radiation doses from yttrium-90 microspheres in treating hepatic tumours. Eur J Nucl Med. 1996;23:947–52.

    Article  CAS  PubMed  Google Scholar 

  56. Chiesa C, Maccauro M, Romito R, Spreafico C, Pellizzari S, Negri A, et al. Need, feasibility and convenience of dosimetric treatment planning in liver selective internal radiation therapy with (90)Y microspheres: the experience of the National Tumor Institute of Milan. Q J Nucl Med Mol Imaging. 2011;55:168–97.

    CAS  PubMed  Google Scholar 

  57. Chiesa C, Mira M, Maccauro M, Romito R, Spreafico C, Sposito C, et al. A dosimetric treatment planning strategy in radioembolization of hepatocarcinoma with 90Y glass microspheres. Q J Nucl Med Mol Imaging. 2012;56:503–8.

    CAS  PubMed  Google Scholar 

  58. Jiang M, Fischman A, Nowakowski F, Heiba S, Zhang Z, Knesaurek K, et al. Segmental perfusion differences on paired Tc-99 m Macroaggregated Albumin (MAA) hepatic perfusion imaging and Yttrium-90 (Y-90) bremsstrahlung imaging studies in SIR-Sphere radioembolization: associations with Angiography. J Nucl Med Radiat Ther. 2012;3:122.

    Article  CAS  Google Scholar 

  59. Wondergem M, Smits ML, Elschot M, de Jong HW, Verkooijen HM, van den Bosch MA, et al. 99mTc-macroaggregated albumin poorly predicts the intrahepatic distribution of 90Y resin microspheres in hepatic radioembolization. J Nucl Med. 2013;54:1294–301. doi:10.2967/jnumed.112.117614.

    Article  CAS  PubMed  Google Scholar 

  60. Basciano C, Kleinstreuer C, Kennedy A. Computational fluid dynamics modeling of 90Y microspheres in human hepatic tumors. J Nucl Med Radiat Ther. 2011;2:1–6.

    Google Scholar 

  61. Walrand S, Lhommel R, Goffette P, Van den Eynde M, Pauwels S, Jamar F. Hemoglobin level significantly impacts the tumor cell survival fraction in humans after internal radiotherapy. EJNMMI Res. 2012;2:20. doi:10.1186/2191-219X-2-20.

    Article  PubMed Central  PubMed  Google Scholar 

  62. Gupta T, Virmani S, Neidt TM, Szolc-Kowalska B, Sato KT, Ryu RK, et al. MR tracking of iron-labeled glass radioembolization microspheres during transcatheter delivery to rabbit VX2 liver tumors: feasibility study. Radiology. 2008;249:845–54. doi:10.1148/radiol.2491072027.

    Article  PubMed  Google Scholar 

  63. Walrand S, Hesse M, Demonceau G, Pauwels S, Jamar F. Yttrium-90-labeled microsphere tracking during liver selective internal radiotherapy by bremsstrahlung pinhole SPECT: feasibility study and evaluation in an abdominal phantom. EJNMMI Res. 2011;1:32. doi:10.1186/2191-219X-1-32.

    Article  PubMed Central  PubMed  Google Scholar 

  64. D’Asseler Y. Advances in SPECT imaging with respect to radionuclide therapy. Q J Nucl Med Mol Imaging. 2009;53:343–7.

    PubMed  Google Scholar 

  65. Minarik D, Sjogreen Gleisner K, Ljungberg M. Evaluation of quantitative (90)Y SPECT based on experimental phantom studies. Phys Med Biol. 2008;53:5689–703. doi:10.1088/0031-9155/53/20/008.

    Article  CAS  PubMed  Google Scholar 

  66. Lassmann M. Dosimetry of short-ranged radionuclides. Nuklearmedizin. 2010;49 Suppl 1:S46–9.

    PubMed  Google Scholar 

  67. Rong X, Du Y, Frey EC. A method for energy window optimization for quantitative tasks that includes the effects of model-mismatch on bias: application to Y-90 bremsstrahlung SPECT imaging. Phys Med Biol. 2012;57:3711–25. doi:10.1088/0031-9155/57/12/3711.

    Article  PubMed Central  PubMed  Google Scholar 

  68. Ito S, Kurosawa H, Kasahara H, Teraoka S, Ariga E, Deji S, et al. (90)Y bremsstrahlung emission computed tomography using gamma cameras. Ann Nucl Med. 2009;23:257–67. doi:10.1007/s12149-009-0233-9.

    Article  CAS  PubMed  Google Scholar 

  69. Knesaurek K, Machac J, Muzinic M, DaCosta M, Zhang Z, Heiba S. Quantitative comparison of yttrium-90 (90Y)-microspheres and technetium-99 m (99mTc)-macroaggregated albumin SPECT images for planning 90Y therapy of liver cancer. Technol Cancer Res Treat. 2010;9:253–62.

    CAS  PubMed  Google Scholar 

  70. Sebastian AJ, Szyszko T, Al-Nahhas A, Nijran K, Tait NP. Evaluation of hepatic angiography procedures and bremsstrahlung imaging in selective internal radiation therapy: a two-year single-center experience. Cardiovasc Intervent Radiol. 2008;31:643–9. doi:10.1007/s00270-008-9298-4.

    Article  CAS  PubMed  Google Scholar 

  71. Minarik D, Ljungberg M, Segars P, Gleisner KS. Evaluation of quantitative planar 90Y bremsstrahlung whole-body imaging. Phys Med Biol. 2009;54:5873–83. doi:10.1088/0031-9155/54/19/014.

    Article  CAS  PubMed  Google Scholar 

  72. Elschot M, Vermolen BJ, Lam MG, de Keizer B, van den Bosch MA, de Jong HW. Quantitative comparison of PET and Bremsstrahlung SPECT for imaging the in vivo yttrium-90 microsphere distribution after liver radioembolization. PLoS One. 2013;8:e55742. doi:10.1371/journal.pone.0055742.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Lau WY, Ho S, Leung TW, Chan M, Ho R, Johnson PJ, et al. Selective internal radiation therapy for nonresectable hepatocellular carcinoma with intraarterial infusion of 90yttrium microspheres. Int J Radiat Oncol Biol Phys. 1998;40:583–92.

    Article  CAS  PubMed  Google Scholar 

  74. Grosser OS, Nultsch M, Laatz K, Ulrich G, Seidensticker R, Pethe A, et al. Radioembolization with (90)Y-labeled microspheres: post-therapeutic therapy validation with Bremsstrahlung-SPECT. Z Med Phys. 2011;21:274–80. doi:10.1016/j.zemedi.2011.05.002.

    Article  Google Scholar 

  75. Minarik D, Sjogreen-Gleisner K, Linden O, Wingardh K, Tennvall J, Strand SE, et al. 90Y Bremsstrahlung imaging for absorbed-dose assessment in high-dose radioimmunotherapy. J Nucl Med. 2010;51:1974–8. doi:10.2967/jnumed.110.079897.

    Article  PubMed  Google Scholar 

  76. Rong X, Du Y, Ljungberg M, Rault E, Vandenberghe S, Frey EC. Development and evaluation of an improved quantitative (90)Y bremsstrahlung SPECT method. Med Phys. 2012;39:2346–58. doi:10.1118/1.3700174.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. van Elmbt L, Vandenberghe S, Walrand S, Pauwels S, Jamar F. Comparison of yttrium-90 quantitative imaging by TOF and non-TOF PET in a phantom of liver selective internal radiotherapy. Phys Med Biol. 2011;56:6759–77. doi:10.1088/0031-9155/56/21/001.

    Article  PubMed  Google Scholar 

  78. Lhommel R, van Elmbt L, Goffette P, Van den Eynde M, Jamar F, Pauwels S, et al. Feasibility of 90Y TOF PET-based dosimetry in liver metastasis therapy using SIR-Spheres. Eur J Nucl Med Mol Imaging. 2010;37:1654–62. doi:10.1007/s00259-010-1470-9.

    Article  PubMed  Google Scholar 

  79. Willowson K, Forwood N, Jakoby BW, Smith AM, Bailey DL. Quantitative (90)Y image reconstruction in PET. Med Phys. 2012;39:7153–9. doi:10.1118/1.4762403.

    Article  CAS  PubMed  Google Scholar 

  80. Kao YH, Tan EH, Ng CE, Goh SW. Yttrium-90 time-of-flight PET/CT is superior to Bremsstrahlung SPECT/CT for postradioembolization imaging of microsphere biodistribution. Clin Nucl Med. 2011;36:e186–7. doi:10.1097/RLU.0b013e31821c9a11.

    Article  PubMed  Google Scholar 

Download references

Conflicts of Interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martha Hoffmann.

Additional information

Hojjat Ahmadzadehfar and Heying Duan contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahmadzadehfar, H., Duan, H., Haug, A.R. et al. The role of SPECT/CT in radioembolization of liver tumours. Eur J Nucl Med Mol Imaging 41 (Suppl 1), 115–124 (2014). https://doi.org/10.1007/s00259-013-2675-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-013-2675-5

Keywords

Navigation