Skip to main content

Advertisement

Log in

Prognostic relevance at 5 years of the early monitoring of neoadjuvant chemotherapy using 18F-FDG PET in luminal HER2-negative breast cancer

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

The objective of this study was to evaluate, in the luminal human epidermal growth factor receptor 2 (HER2)-negative breast cancer subtype, the prognostic value of tumour glucose metabolism at baseline and of its early changes during neoadjuvant chemotherapy (NAC).

Methods

This prospective study included 61 women with hormone-sensitive HER2-negative breast cancer treated with NAC. 18F-Fluorodeoxyglucose (FDG) positron emission tomography (PET) was performed at baseline. Hepatic activity was used as a reference to distinguish between low metabolic and hypermetabolic tumours. In hypermetabolic tumours, a PET exam was repeated after the first course of NAC. The relative change in the maximum standardized uptake value of the tumour (∆SUV) was calculated.

Results

Nineteen women had low metabolic luminal breast cancers at baseline, correlated with low proliferation indexes. Forty-two women had hypermetabolic tumours, corresponding to more proliferative breast cancers with higher Ki-67 expression (p = 0.017) and higher grade (p = 0.04). The median follow-up period was 64.2 months (range 11.5–93.2). Thirteen women developed recurrent disease, nine of whom died. Worse overall survival was associated with larger tumour size [>5 cm, hazard ratio (HR) = 6.52, p = 0.009] and with hypermetabolic tumours achieving a low metabolic response after one cycle of NAC (ΔSUV < 16 %, HR = 10.63, p = 0.004). Five-year overall survival in these poor responder patients was 49.2 %. Overall survival in women with low metabolic tumours or hypermetabolic/good response tumours was 100 and 96.15 %, respectively.

Conclusion

In luminal HER2-negative breast tumours, tumour metabolism at baseline and changes after the first course of NAC are early surrogate markers of patients’ survival. A subgroup of women with hypermetabolic/poorly responding tumours, correlated with poor prognosis at 5 years, can be identified early. These results may guide future studies by tailoring the NAC regimen to the metabolic response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Mauri D, Pavlidis N, Ioannidis JP. Neoadjuvant versus adjuvant systemic treatment in breast cancer: a meta-analysis. J Natl Cancer Inst 2005;97:188–94.

    Article  PubMed  Google Scholar 

  2. Fisher B, Bryant J, Wolmark N, Mamounas E, Brown A, Fisher ER, et al. Effect of preoperative chemotherapy on the outcome of women with operable breast cancer. J Clin Oncol 1998;16:2672–85.

    CAS  PubMed  Google Scholar 

  3. Kuerer HM, Newman LA, Smith TL, Ames FC, Hunt KK, Dhingra K, et al. Clinical course of breast cancer patients with complete pathologic primary tumor and axillary lymph node response to doxorubicin-based neoadjuvant chemotherapy. J Clin Oncol 1999;17:460–9.

    CAS  PubMed  Google Scholar 

  4. von Minckwitz G, Untch M, Blohmer JU, Costa SD, Eidtmann H, Fasching PA, et al. Definition and impact of pathologic complete response on prognosis after neoadjuvant chemotherapy in various intrinsic breast cancer subtypes. J Clin Oncol 2012;30:1796–804.

    Article  Google Scholar 

  5. Perou CM, Sørlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, et al. Molecular portraits of human breast tumours. Nature 2000;406:747–52.

    Article  CAS  PubMed  Google Scholar 

  6. Sørlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A 2001;98:10869–74.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Sørlie T, Tibshirani R, Parker J, Hastie T, Marron JS, Nobel A, et al. Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci U S A 2003;100:8418–23.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Bhargava R, Striebel J, Beriwal S, Flickinger JC, Onisko A, Ahrendt G, et al. Prevalence, morphologic features and proliferation indices of breast carcinoma molecular classes using immunohistochemical surrogate markers. Int J Clin Exp Pathol 2009;2:444–55.

    CAS  PubMed Central  PubMed  Google Scholar 

  9. de Ronde JJ, Hannemann J, Halfwerk H, Mulder L, Straver ME, Vrancken Peeters MJ, et al. Concordance of clinical and molecular breast cancer subtyping in the context of preoperative chemotherapy response. Breast Cancer Res Treat 2010;119:119–26.

    Article  PubMed  Google Scholar 

  10. Bhargava R, Beriwal S, Dabbs DJ, Ozbek U, Soran A, Johnson RR, et al. Immunohistochemical surrogate markers of breast cancer molecular classes predicts response to neoadjuvant chemotherapy: a single institutional experience with 359 cases. Cancer 2010;116:1431–9.

    Article  CAS  PubMed  Google Scholar 

  11. Darb-Esfahani S, Loibl S, Müller BM, Roller M, Denkert C, Komor M, et al. Identification of biology-based breast cancer types with distinct predictive and prognostic features: role of steroid hormone and HER2 receptor expression in patients treated with neoadjuvant anthracycline/taxane-based chemotherapy. Breast Cancer Res 2009;11:R69.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Kim SI, Sohn J, Koo JS, Park SH, Park HS, Park BW. Molecular subtypes and tumor response to neoadjuvant chemotherapy in patients with locally advanced breast cancer. Oncology 2010;79:324–30.

    Article  CAS  PubMed  Google Scholar 

  13. Voduc KD, Cheang MC, Tyldesley S, Gelmon K, Nielsen TO, Kennecke H. Breast cancer subtypes and the risk of local and regional relapse. J Clin Oncol 2010;28:1684–91.

    Article  PubMed  Google Scholar 

  14. Hugh J, Hanson J, Cheang MC, Nielsen TO, Perou CM, Dumontet C, et al. Breast cancer subtypes and response to docetaxel in node-positive breast cancer: use of an immunohistochemical definition in the BCIRG 001 trial. J Clin Oncol 2009;27:1168–76.

    Article  CAS  PubMed  Google Scholar 

  15. Cheang MC, Chia SK, Voduc D, Gao D, Leung S, Snider J, et al. Ki67 index, HER2 status, and prognosis of patients with luminal B breast cancer. J Natl Cancer Inst 2009;101:736–50.

    Article  CAS  PubMed  Google Scholar 

  16. Gnant M, Harbeck N, Thomssen C. St. Gallen 2011: Summary of the Consensus Discussion. Breast Care (Basel) 2011;6:136–41.

    Article  Google Scholar 

  17. Cortazar P, Zhang L, Untch M, Mehta K, Costantino J, Wolmark N, et al. Meta-analysis results from the Collaborative Trials in Neoadjuvant Breast Cancer (CTNeoBC). Presented at the San Antonio Breast Cancer Symposium, Texas, USA, 4–8 December 2012.

  18. Schwarz-Dose J, Untch M, Tiling R, Sassen S, Mahner S, Kahlert S, et al. Monitoring primary systemic therapy of large and locally advanced breast cancer by using sequential positron emission tomography imaging with [18F]fluorodeoxyglucose. J Clin Oncol 2009;27:535–41.

    Article  PubMed  Google Scholar 

  19. Berriolo-Riedinger A, Touzery C, Riedinger JM, Toubeau M, Coudert B, Arnould L, et al. [18F]FDG-PET predicts complete pathological response of breast cancer to neoadjuvant chemotherapy. Eur J Nucl Med Mol Imaging 2007;34:1915–24.

    Article  CAS  PubMed  Google Scholar 

  20. Rousseau C, Devillers A, Sagan C, Ferrer L, Bridji B, Campion L, et al. Monitoring of early response to neoadjuvant chemotherapy in stage II and III breast cancer by [18F]fluorodeoxyglucose positron emission tomography. J Clin Oncol 2006;24:5366–72.

    Article  PubMed  Google Scholar 

  21. Humbert O, Berriolo-Riedinger A, Riedinger JM, Coudert B, Arnould L, Cochet A, et al. Changes in 18F-FDG tumor metabolism after a first course of neoadjuvant chemotherapy in breast cancer: influence of tumor subtypes. Ann Oncol 2012;23:2572–7.

    Article  CAS  PubMed  Google Scholar 

  22. Keam B, Im SA, Koh Y, Han SW, Oh DY, Cho N, et al. Early metabolic response using FDG PET/CT and molecular phenotypes of breast cancer treated with neoadjuvant chemotherapy. BMC Cancer 2011;11:452.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Elston CW, Ellis IO. Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: experience from a large study with long-term follow-up. Histopathology 1991;19:403–10. Histopathology 2002;41:151–2, discussion.

    Google Scholar 

  24. Green MC, Buzdar AU, Smith T, Ibrahim NK, Valero V, Rosales MF, et al. Weekly paclitaxel improves pathologic complete remission in operable breast cancer when compared with paclitaxel once every 3 weeks. J Clin Oncol 2005;23:5983–92.

    Article  CAS  PubMed  Google Scholar 

  25. Zafrani B, Aubriot MH, Mouret E, De Crémoux P, De Rycke Y, Nicolas A, et al. High sensitivity and specificity of immunohistochemistry for the detection of hormone receptors in breast carcinoma: comparison with biochemical determination in a prospective study of 793 cases. Histopathology 2000;37:536–45.

    Article  CAS  PubMed  Google Scholar 

  26. Wolff AC, Hammond ME, Schwartz JN, Hagerty KL, Allred DC, Cote RJ, et al. American Society of Clinical Oncology/College of American Pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer. J Clin Oncol 2007;25:118–45.

    Article  CAS  PubMed  Google Scholar 

  27. Lips EH, Mulder L, de Ronde JJ, Mandjes IA, Vincent A, Vrancken Peeters MT, et al. Neoadjuvant chemotherapy in ER+ HER2- breast cancer: response prediction based on immunohistochemical and molecular characteristics. Breast Cancer Res Treat 2012;131:827–36.

    Article  CAS  PubMed  Google Scholar 

  28. Esserman LJ, Berry DA, Cheang MC, Yau C, Perou CM, Carey L, et al. Chemotherapy response and recurrence-free survival in neoadjuvant breast cancer depends on biomarker profiles: results from the I-SPY 1 TRIAL (CALGB 150007/150012; ACRIN 6657). Breast Cancer Res Treat 2012;132:1049–62.

    Google Scholar 

  29. Buck A, Schirrmeister H, Kühn T, Shen C, Kalker T, Kotzerke J, et al. FDG uptake in breast cancer: correlation with biological and clinical prognostic parameters. Eur J Nucl Med Mol Imaging 2002;29:1317–23.

    Article  CAS  PubMed  Google Scholar 

  30. Vranjesevic D, Schiepers C, Silverman DH, Quon A, Villalpando J, Dahlbom M, et al. Relationship between 18F-FDG uptake and breast density in women with normal breast tissue. J Nucl Med 2003;44:1238–42.

    PubMed  Google Scholar 

  31. Kanstrup IL, Klausen TL, Bojsen-Møller J, Magnusson P, Zerahn B. Variability and reproducibility of hepatic FDG uptake measured as SUV as well as tissue-to-blood background ratio using positron emission tomography in healthy humans. Clin Physiol Funct Imaging 2009;29:108–13.

    Article  CAS  PubMed  Google Scholar 

  32. Katz A, Saad ED, Porter P, Pusztai L. Primary systemic chemotherapy of invasive lobular carcinoma of the breast. Lancet Oncol 2007;8:55–62.

    Article  CAS  PubMed  Google Scholar 

  33. Colleoni M, Viale G, Goldhirsch A. Lessons on responsiveness to adjuvant systemic therapies learned from the neoadjuvant setting. Breast 2009;18 Suppl 3:S137–40.

    Article  PubMed  Google Scholar 

  34. Semiglazov VF, Semiglazov VV, Dashyan GA, Ziltsova EK, Ivanov VG, Bozhok AA, et al. Phase 2 randomized trial of primary endocrine therapy versus chemotherapy in postmenopausal patients with estrogen receptor-positive breast cancer. Cancer 2007;110:244–54.

    Article  CAS  PubMed  Google Scholar 

  35. Alba E, Calvo L, Albanell J, De la Haba JR, Arcusa Lanza A, Chacon JI, et al. Chemotherapy (CT) and hormonotherapy (HT) as neoadjuvant treatment in luminal breast cancer patients: results from the GEICAM/2006-03, a multicenter, randomized, phase-II study. Ann Oncol 2012;23:3069–74.

    Article  CAS  PubMed  Google Scholar 

  36. Boellaard R. Need for standardization of 18F-FDG PET/CT for treatment response assessments. J Nucl Med 2011;52 Suppl 2:93S–100S.

    Article  PubMed  Google Scholar 

  37. Boellaard R, Oyen WJ, Hoekstra CJ, Hoekstra OS, Visser EP, Willemsen AT, et al. The Netherlands protocol for standardisation and quantification of FDG whole body PET studies in multi-centre trials. Eur J Nucl Med Mol Imaging 2008;35:2320–33.

    Article  PubMed  Google Scholar 

  38. Boellaard R. Standards for PET image acquisition and quantitative data analysis. J Nucl Med 2009;50 Suppl 1:11S–20S.

    Article  CAS  PubMed  Google Scholar 

  39. Haque R, Ahmed SA, Inzhakova G, Shi J, Avila C, Polikoff J, et al. Impact of breast cancer subtypes and treatment on survival: an analysis spanning two decades. Cancer Epidemiol Biomarkers Prev 2012;21:1848–55.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Mr. Bastable for his writing services. This study is part of the PharmImage® project.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Humbert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Humbert, O., Berriolo-Riedinger, A., Cochet, A. et al. Prognostic relevance at 5 years of the early monitoring of neoadjuvant chemotherapy using 18F-FDG PET in luminal HER2-negative breast cancer. Eur J Nucl Med Mol Imaging 41, 416–427 (2014). https://doi.org/10.1007/s00259-013-2616-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-013-2616-3

Keywords

Navigation