Skip to main content

Advertisement

Log in

Quantitative assessment of global lung inflammation following radiation therapy using FDG PET/CT: a pilot study

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Radiation pneumonitis is the most severe dose-limiting complication in patients receiving thoracic radiation therapy. The aim of this study was to quantify global lung inflammation following radiation therapy using FDG PET/CT.

Methods

We studied 20 subjects with stage III non-small-cell lung carcinoma who had undergone FDG PET/CT imaging before and after radiation therapy. On all PET/CT studies, the sectional lung volume (sLV) of each lung was calculated from each slice by multiplying the lung area by slice thickness. The sectional lung glycolysis (sLG) was calculated by multiplying the sLV and the lung sectional mean standardized uptake value (sSUVmean) on each slice passing through the lung. The lung volume (LV) was calculated by adding all sLVs from the lung, and the global lung glycolysis (GLG) was calculated by adding all sLGs from the lung. Finally, the lung SUVmean was calculated by dividing the GLG by the LV. The amount of inflammation in the lung parenchyma directly receiving radiation therapy was calculated by subtracting tumor measurements from GLG.

Results

In the lung directly receiving radiation therapy, the lung parenchyma SUVmean and global lung parenchymal glycolysis were significantly increased following therapy. In the contralateral lung (internal control), no significant changes were observed in lung SUVmean or GLG following radiation therapy.

Conclusion

Global lung parenchymal glycolysis and lung parenchymal SUVmean may serve as potentially useful biomarkers to quantify lung inflammation on FDG PET/CT following thoracic radiation therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Palma DA, Senan S, Tsujino K, Barriger RB, Rengan R, Moreno M, et al. Predicting radiation pneumonitis after chemoradiation therapy for lung cancer: an international individual patient data meta-analysis. Int J Radiat Oncol Biol Phys. 2013;85(2):444–50. doi:10.1016/j.ijrobp.2012.04.043.

    Article  PubMed  Google Scholar 

  2. Echeverria AE, McCurdy M, Castillo R, Bernard V, Ramos NV, Buckley W, et al. Proton therapy radiation pneumonitis local dose–response in esophagus cancer patients. Radiother Oncol. 2013;106(1):124–9. doi:10.1016/j.radonc.2012.09.003.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Mac Manus MP, Ding Z, Hogg A, Herschtal A, Binns D, Ball DL, et al. Association between pulmonary uptake of fluorodeoxyglucose detected by positron emission tomography scanning after radiation therapy for non-small-cell lung cancer and radiation pneumonitis. Int J Radiat Oncol Biol Phys. 2011;80(5):1365–71. doi:10.1016/j.ijrobp.2010.04.021.

    Article  PubMed  Google Scholar 

  4. Zhang XJ, Sun JG, Sun J, Ming H, Wang XX, Wu L, et al. Prediction of radiation pneumonitis in lung cancer patients: a systematic review. J Cancer Res Clin Oncol. 2012;138(12):2103–16. doi:10.1007/s00432-012-1284-1.

    Article  PubMed  Google Scholar 

  5. Kocak Z, Evans ES, Zhou SM, Miller KL, Folz RJ, Shafman TD, et al. Challenges in defining radiation pneumonitis in patients with lung cancer. Int J Radiat Oncol Biol Phys. 2005;62(3):635–8. doi:10.1016/j.ijrobp.2004.12.023.

    Article  PubMed  Google Scholar 

  6. Yirmibesoglu E, Higginson DS, Fayda M, Rivera MP, Halle J, Rosenman J, et al. Challenges scoring radiation pneumonitis in patients irradiated for lung cancer. Lung Cancer. 2012;76(3):350–3. doi:10.1016/j.lungcan.2011.11.025.

    Article  PubMed  Google Scholar 

  7. Marks LB, Spencer DP, Bentel GC, Ray SK, Sherouse GW, Sontag MR, et al. The utility of SPECT lung perfusion scans in minimizing and assessing the physiologic consequences of thoracic irradiation. Int J Radiat Oncol Biol Phys. 1993;26(4):659–68.

    Article  CAS  PubMed  Google Scholar 

  8. Hicks RJ, Mac Manus MP, Matthews JP, Hogg A, Binns D, Rischin D, et al. Early FDG-PET imaging after radical radiotherapy for non-small-cell lung cancer: inflammatory changes in normal tissues correlate with tumor response and do not confound therapeutic response evaluation. Int J Radiat Oncol Biol Phys. 2004;60(2):412–8. doi:10.1016/j.ijrobp.2004.03.036.

    Article  PubMed  Google Scholar 

  9. McCurdy MR, Wazni MW, Martinez J, McAleer MF, Guerrero T. Exhaled nitric oxide predicts radiation pneumonitis in esophageal and lung cancer patients receiving thoracic radiation. Radiother Oncol. 2011;101(3):443–8. doi:10.1016/j.radonc.2011.08.035.

    Article  CAS  PubMed  Google Scholar 

  10. McCurdy MR, Castillo R, Martinez J, Al Hallack MN, Lichter J, Zouain N, et al. [18F]-FDG uptake dose–response correlates with radiation pneumonitis in lung cancer patients. Radiother Oncol. 2012;104(1):52–7.

    Article  PubMed Central  PubMed  Google Scholar 

  11. De Ruysscher D, Dehing C, Yu S, Wanders R, Ollers M, Dingemans AM, et al. Dyspnea evolution after high-dose radiotherapy in patients with non-small cell lung cancer. Radiother Oncol. 2009;91(3):353–9. doi:10.1016/j.radonc.2008.10.006.

    Article  PubMed  Google Scholar 

  12. Hart JP, McCurdy MR, Ezhil M, Wei W, Khan M, Luo D, et al. Radiation pneumonitis: correlation of toxicity with pulmonary metabolic radiation response. Int J Radiat Oncol Biol Phys. 2008;71(4):967–71. doi:10.1016/j.ijrobp.2008.04.002.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Jadvar H, Alavi A, Gambhir SS. 18F-FDG uptake in lung, breast, and colon cancers: molecular biology correlates and disease characterization. J Nucl Med. 2009;50(11):1820–7. doi:10.2967/jnumed.108.054098.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Salavati A, Basu S, Heidari P, Alavi A. Impact of fluorodeoxyglucose PET on the management of esophageal cancer. Nucl Med Commun. 2009;30(2):95–116. doi:10.1097/MNM.0b013e32831af204.

    Article  PubMed  Google Scholar 

  15. Tchou J, Sonnad SS, Bergey MR, Basu S, Tomaszewski J, Alavi A, et al. Degree of tumor FDG uptake correlates with proliferation index in triple negative breast cancer. Mol Imaging Biol. 2010;12(6):657–62. doi:10.1007/s11307-009-0294-0.

    Article  PubMed  Google Scholar 

  16. De Ruysscher D, Nestle U, Jeraj R, Macmanus M. PET scans in radiotherapy planning of lung cancer. Lung Cancer. 2012;75(2):141–5. doi:10.1016/j.lungcan.2011.07.018.

    Article  PubMed  Google Scholar 

  17. Muijs CT, Schreurs LM, Busz DM, Beukema JC, van der Borden AJ, Pruim J, et al. Consequences of additional use of PET information for target volume delineation and radiotherapy dose distribution for esophageal cancer. Radiother Oncol. 2009;93(3):447–53. doi:10.1016/j.radonc.2009.08.030.

    Article  PubMed  Google Scholar 

  18. MacManus M, Nestle U, Rosenzweig KE, Carrio I, Messa C, Belohlavek O, et al. Use of PET and PET/CT for radiation therapy planning: IAEA expert report 2006–2007. Radiother Oncol. 2009;91(1):85–94. doi:10.1016/j.radonc.2008.11.008.

    Article  PubMed  Google Scholar 

  19. Basu S, Zhuang H, Torigian DA, Rosenbaum J, Chen W, Alavi A. Functional imaging of inflammatory diseases using nuclear medicine techniques. Semin Nucl Med. 2009;39(2):124–45. doi:10.1053/j.semnuclmed.2008.10.006.

    Article  PubMed  Google Scholar 

  20. McCurdy M, McAleer MF, Wei W, Ezhil M, Johnson V, Khan M, et al. Induction and concurrent taxanes enhance both the pulmonary metabolic radiation response and the radiation pneumonitis response in patients with esophagus cancer. Int J Radiat Oncol Biol Phys. 2010;76(3):816–23. doi:10.1016/j.ijrobp.2009.02.059.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Kanzaki R, Higashiyama M, Maeda J, Okami J, Hosoki T, Hasegawa Y, et al. Clinical value of F18-fluorodeoxyglucose positron emission tomography-computed tomography in patients with non-small cell lung cancer after potentially curative surgery: experience with 241 patients. Interact Cardiovasc Thorac Surg. 2010;10(6):1009–14. doi:10.1510/icvts.2009.227538.

    Article  PubMed  Google Scholar 

  22. Teo BK, Abelson J, Teo A, Graves EE, Guerrero T, et al. Time interval to FDG PET/CT after mediastinal radiation impacts the dose response of pneumonitis related metabolic activity. Int J Radiat Oncol Biol Phys. 2008;72(1):S67–S8. doi:10.1016/j.ijrobp.2008.06.919.

    Article  Google Scholar 

  23. Hofheinz F, Langner J, Petr J, Beuthien-Baumann B, Oehme L, Steinbach J, et al. A method for model-free partial volume correction in oncological PET. EJNMMI Res. 2012;2(1):16. doi:10.1186/2191-219X-2-16.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Hofheinz F, Dittrich S, Potzsch C, Hoff J. Effects of cold sphere walls in PET phantom measurements on the volume reproducing threshold. Phys Med Biol. 2010;55(4):1099–113. doi:10.1088/0031-9155/55/4/013.

    Article  CAS  PubMed  Google Scholar 

  25. Hofheinz F, Potzsch C, Oehme L, Beuthien-Baumann B, Steinbach J, Kotzerke J, et al. Automatic volume delineation in oncological PET. Evaluation of a dedicated software tool and comparison with manual delineation in clinical data sets. Nuklearmedizin. 2012;51(1):9–16. doi:10.3413/Nukmed-0419-11-07.

    Article  CAS  PubMed  Google Scholar 

  26. Schaefer A, Kim YJ, Kremp S, Mai S, Fleckenstein J, Bohnenberger H, et al. PET-based delineation of tumour volumes in lung cancer: comparison with pathological findings. Eur J Nucl Med Mol Imaging. 2013;40(8):1233–44. doi:10.1007/s00259-013-2407-x.

    Article  CAS  PubMed  Google Scholar 

  27. Schaefer A, Kremp S, Hellwig D, Rube C, Kirsch CM, Nestle U. A contrast-oriented algorithm for FDG-PET-based delineation of tumour volumes for the radiotherapy of lung cancer: derivation from phantom measurements and validation in patient data. Eur J Nucl Med Mol Imaging. 2008;35(11):1989–99. doi:10.1007/s00259-008-0875-1.

    Article  PubMed  Google Scholar 

  28. Torigian DA, Lopez RF, Alapati S, Bodapati G, Hofheinz F, van den Hoff J, et al. Feasibility and performance of novel software to quantify metabolically active volumes and 3D partial volume corrected SUV and metabolic volumetric products of spinal bone marrow metastases on 18F-FDG-PET/CT. Hell J Nucl Med. 2011;14(1):8–14.

    PubMed  Google Scholar 

  29. Musiek ES, Saboury B, Mishra S, Chen Y, Reddin JS, Newberg AB, et al. Feasibility of estimation of brain volume and 2-deoxy-2-(18)F-fluoro-D-glucose metabolism using a novel automated image analysis method: application in Alzheimer’s disease. Hell J Nucl Med. 2012;15(3):190–6. doi:10.1967/s002449910052.

    PubMed  Google Scholar 

  30. Kwee TC, Torigian DA, Alavi A. Nononcological applications of positron emission tomography for evaluation of the thorax. J Thorac Imaging. 2013;28(1):25–39. doi:10.1097/RTI.0b013e31827882a9.

    Article  PubMed  Google Scholar 

  31. Subramanian DR, Jenkins L, Edgar R, Quraishi N, Stockley RA, Parr DG. Assessment of pulmonary neutrophilic inflammation in emphysema by quantitative positron emission tomography. Am J Respir Crit Care Med. 2012;186(11):1125–32. doi:10.1164/rccm.201201-0051OC.

    Article  PubMed  Google Scholar 

  32. Torigian DA, Dam V, Chen X, Saboury B, Udupa JK, Rashid A, et al. In vivo quantification of pulmonary inflammation in relation to emphysema severity via partial volume corrected (18)F-FDG-PET using computer-assisted analysis of diagnostic chest CT. Hell J Nucl Med. 2013;16(1):12–8. doi:10.1967/s0024499100066.

    PubMed  Google Scholar 

  33. Basu S, Zaidi H, Houseni M, Bural G, Udupa J, Acton P, et al. Novel quantitative techniques for assessing regional and global function and structure based on modern imaging modalities: implications for normal variation, aging and diseased states. Semin Nucl Med. 2007;37(3):223–39. doi:10.1053/j.semnuclmed.2007.01.005.

    Article  PubMed  Google Scholar 

  34. Basu S, Alavi A. Partial volume correction of standardized uptake values and the dual time point in FDG-PET imaging: should these be routinely employed in assessing patients with cancer? Eur J Nucl Med Mol Imaging. 2007;34(10):1527–9. doi:10.1007/s00259-007-0467-5.

    Article  PubMed  Google Scholar 

  35. Bural G, Torigian DA, Houseni M, Basu S, Srinivas S, Alavi A. Tumor metabolism measured by partial volume corrected standardized uptake value varies considerably in primary and metastatic sites in patients with lung cancer. A new observation. Hell J Nucl Med. 2009;12(3):218–22.

    PubMed  Google Scholar 

  36. Petit SF, van Elmpt WJ, Oberije CJ, Vegt E, Dingemans AM, Lambin P, et al. [18F]fluorodeoxyglucose uptake patterns in lung before radiotherapy identify areas more susceptible to radiation-induced lung toxicity in non-small-cell lung cancer patients. Int J Radiat Oncol Biol Phys. 2011;81(3):698–705. doi:10.1016/j.ijrobp.2010.06.016.

    Article  PubMed  Google Scholar 

  37. Kong FM, Frey KA, Quint LE, Ten Haken RK, Hayman JA, Kessler M, et al. A pilot study of [18F]fluorodeoxyglucose positron emission tomography scans during and after radiation-based therapy in patients with non small-cell lung cancer. J Clin Oncol. 2007;25(21):3116–23. doi:10.1200/JCO.2006.10.3747.

    Article  PubMed  Google Scholar 

  38. De Ruysscher D, Houben A, Aerts HJ, Dehing C, Wanders R, Ollers M, et al. Increased (18)F-deoxyglucose uptake in the lung during the first weeks of radiotherapy is correlated with subsequent Radiation-Induced Lung Toxicity (RILT): a prospective pilot study. Radiother Oncol. 2009;91(3):415–20. doi:10.1016/j.radonc.2009.01.004.

    Article  PubMed  Google Scholar 

  39. Guerrero T, Johnson V, Hart J, Pan T, Khan M, Luo D, et al. Radiation pneumonitis: local dose versus [18F]-fluorodeoxyglucose uptake response in irradiated lung. Int J Radiat Oncol Biol Phys. 2007;68(4):1030–5. doi:10.1016/j.ijrobp.2007.01.031.

    Article  CAS  PubMed  Google Scholar 

  40. Soret M, Bacharach SL, Buvat I. Partial-volume effect in PET tumor imaging. J Nucl Med. 2007;48(6):932–45. doi:10.2967/jnumed.106.035774.

    Article  PubMed  Google Scholar 

  41. Erlandsson K, Buvat I, Pretorius PH, Thomas BA, Hutton BF. A review of partial volume correction techniques for emission tomography and their applications in neurology, cardiology and oncology. Phys Med Biol. 2012;57(21):R119–59. doi:10.1088/0031-9155/57/21/R119.

    Article  PubMed  Google Scholar 

Download references

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abass Alavi.

Additional information

Sarah Abdulla, Ali Salavati, and Babak Saboury contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abdulla, S., Salavati, A., Saboury, B. et al. Quantitative assessment of global lung inflammation following radiation therapy using FDG PET/CT: a pilot study. Eur J Nucl Med Mol Imaging 41, 350–356 (2014). https://doi.org/10.1007/s00259-013-2579-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-013-2579-4

Keywords

Navigation