Skip to main content
Log in

Synthesis and evaluation of 18F-labeled benzylguanidine analogs for targeting the human norepinephrine transporter

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Both 131I- and 123I-labeled meta-iodobenzylguanidine (MIBG) have been widely used in the clinic for targeted imaging of the norepinephrine transporter (NET). The human NET (hNET) gene has been imaged successfully with 124I-MIBG positron emission tomography (PET) at time points of >24 h post-injection (p.i.). 18F-labeled MIBG analogs may be ideal to image hNET expression at time points of <8 h p.i. We developed improved methods for the synthesis of known MIBG analogs, [18F]MFBG and [18F]PFBG and evaluated them in hNET reporter gene-transduced C6 rat glioma cells and xenografts.

Methods

[18F]MFBG and [18F]PFBG were synthesized manually using a three-step synthetic scheme. Wild-type and hNET reporter gene-transduced C6 rat glioma cells and xenografts were used to comparatively evaluate the 18F-labeled analogs with [123I]/[124I]MIBG.

Results

The fluorination efficacy on benzonitrile was predominantly determined by the position of the trimethylammonium group. The para-isomer afforded higher yields (75 ± 7 %) than meta-isomer (21 ± 5 %). The reaction of [18F]fluorobenzylamine with 1H-pyrazole-1-carboximidamide was more efficient than with 2-methyl-2-thiopseudourea. The overall radiochemical yields (decay-corrected) were 11 ± 2 % (n = 12) for [18F]MFBG and 41 ± 12 % (n = 5) for [18F]PFBG, respectively. The specific uptakes of [18F]MFBG and [18F]PFBG were similar in C6-hNET cells, but 4-fold less than that of [123I]/[124I]MIBG. However, in vivo [18F]MFBG accumulation in C6-hNET tumors was 1.6-fold higher than that of [18F]PFBG at 1 h p.i., whereas their uptakes were similar at 4 h. Despite [18F]MFBG having a 2.8-fold lower affinity to hNET and approximately 4-fold lower cell uptake in vitro compared to [123I]/[124I]MIBG, PET imaging demonstrated that [18F]MFBG was able to visualize C6-hNET xenografts better than [124I]MIBG. Biodistribution studies showed [18F]MFBG and 123I-MIBG had a similar tumor accumulation, which was lower than that of no-carrier-added [124I]MIBG, but [18F]MFBG showed a significantly more rapid body clearance and lower uptake in most non-targeting organs.

Conclusion

[18F]MFBG and [18F]PFBG were synthesized in reasonable radiochemical yields under milder conditions. [18F]MFBG is a better PET ligand to image hNET expression in vivo at 1–4 h p.i. than both [18F]PFBG and [123I]/[124I]MIBG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

NET:

Norepinephrine transporter

hNET:

Human norepinephrine transporter

MIBG:

Meta-iodobenzylguanidine

[18F]MFBG:

Meta-[18F]fluorobenzylguanidine

[18F]PFBG:

Para-[18F]fluorobenzylguanidine

SPECT:

Single photon emission computed tomography

PET:

Positron emission tomography

[76Br]MBBG:

Meta-[76Br]bromobenzylguanidine

[18F]FIBG:

4-[18F]fluoro-3-iodobenzylguanidine

LMI1195:

N-[3-bromo-4-(3-(18)F-fluoro-propoxy)-benzyl]-guanidine

C6-WT:

C6 wild-type rat glioma cells

C6-hNET:

hNET gene stably transduced C6 cells

PIBG:

Para-iodobenzylguanidine

TBA[18F]F:

Tetrabutylammonium [18F]fluoride

MeCN:

acetonitrile

TFA:

Trifluoroacetic acid

PBS:

Phosphate-buffered saline

ROI:

Region of interest

References

  1. Pacholczyk T, Blakely RD, Amara SG. Expression cloning of a cocaine- and antidepressant-sensitive human noradrenaline transporter. Nature 1991;350:350–4.

    Article  CAS  PubMed  Google Scholar 

  2. Axelrod J, Kopin IJ. The uptake, storage, release and metabolism of noradrenaline in sympathetic nerves. Prog Brain Res 1969;31:21–32.

    Article  CAS  PubMed  Google Scholar 

  3. Anton M, Wagner B, Haubner R, Bodenstein C, Essien BE, Bönisch H, et al. Use of the norepinephrine transporter as a reporter gene for non-invasive imaging of genetically modified cells. J Gene Med 2004;6:119–26.

    Article  CAS  PubMed  Google Scholar 

  4. Moroz MA, Serganova I, Zanzonico P, Ageyeva L, Beresten T, Dyomina E, et al. Imaging hNET reporter gene expression with 124I-MIBG. J Nucl Med 2007;48:827–36.

    Article  CAS  PubMed  Google Scholar 

  5. Grünwald F, Ezziddin S. 131I-metaiodobenzylguanidine therapy of neuroblastoma and other neuroendocrine tumors. Semin Nucl Med 2010;40:153–63.

    Article  PubMed  Google Scholar 

  6. Brisse HJ, McCarville MB, Granata C, Krug KB, Wootton-Gorges SL, Kanegawa K, et al. Guidelines for imaging and staging of neuroblastic tumors: consensus report from the International Neuroblastoma Risk Group Project. Radiology 2011;261:243–57.

    Article  PubMed  Google Scholar 

  7. Pryma D, Divgi C. Meta-iodobenzyl guanidine for detection and staging of neuroendocrine tumors. Nucl Med Biol 2008;35:5.

    Article  Google Scholar 

  8. Jacobson AF, Deng H, Lombard J, Lessig HJ, Black RR. 123I-meta-iodobenzylguanidine scintigraphy for the detection of neuroblastoma and pheochromocytoma: results of a meta-analysis. J Clin Endocrinol Metab 2010;95:2596–606.

    Article  CAS  PubMed  Google Scholar 

  9. Fonte JS, Robles JF, Chen CC, Reynolds J, Whatley M, Ling A, et al. False-negative 123I-MIBG SPECT is most commonly found in SDHB-related pheochromocytoma or paraganglioma with high frequency to develop metastatic disease. Endocr Relat Cancer 2012;19:83–93.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Vaidyanathan G. Meta-iodobenzylguanidine and analogues: chemistry and biology. Q J Nucl Med Mol Imaging 2008;52:351–68.

    CAS  PubMed  Google Scholar 

  11. Lee CL, Wahnishe H, Sayre GA, Cho HM, Kim HJ, Hernandez-Pampaloni M, et al. Radiation dose estimation using preclinical imaging with 124I-metaiodobenzylguanidine (MIBG) PET. Med Phys 2010;37:4861–7.

    Article  PubMed  Google Scholar 

  12. Watanabe S, Hanaoka H, Liang JX, Iida Y, Endo K, Ishioka NS. PET imaging of norepinephrine transporter-expressing tumors using 76Br-meta-bromobenzylguanidine. J Nucl Med 2010;51:1472–9.

    Article  CAS  PubMed  Google Scholar 

  13. Garg PK, Garg S, Zalutsky MR. Synthesis and preliminary evaluation of para- and meta-[18F]fluorobenzylguanidine. Nucl Med Biol 1994;21:97–103.

    Article  CAS  PubMed  Google Scholar 

  14. Berry CR, Garg PK, Zalutsky MR, Coleman RE, DeGrado TR. Uptake and retention kinetics of para-fluorine-18-fluorobenzylguanidine in isolated rat heart. J Nucl Med 1996;37:2011–6.

    CAS  PubMed  Google Scholar 

  15. Berry CR, DeGrado TR, Nutter F, Garg PK, Breitschwerdt EB, Spaulding K, et al. Imaging of pheochromocytoma in 2 dogs using p-[18F] fluorobenzylguanidine. Vet Radiol Ultrasound 2002;43:183–6.

    Article  PubMed  Google Scholar 

  16. Vaidyanathan G, Affleck DJ, Zalutsky MR. (4-[18F]fluoro-3-iodobenzyl)guanidine, a potential MIBG analogue for positron emission tomography. J Med Chem 1994;37:3655–62.

    Article  CAS  PubMed  Google Scholar 

  17. Vaidyanathan G, Affleck DJ, Zalutsky MR. Validation of 4-[fluorine-18]fluoro-3-iodobenzylguanidine as a positron-emitting analog of MIBG. J Nucl Med 1995;36:644–50.

    CAS  PubMed  Google Scholar 

  18. Lee BC, Paik JY, Chi DY, Lee KH, Choe YS. Potential and practical adrenomedullary PET radiopharmaceuticals as an alternative to m-iodobenzylguanidine: m-(omega-[18F]fluoroalkyl)benzylguanidines. Bioconjug Chem 2004;15:104–11.

    Article  CAS  PubMed  Google Scholar 

  19. Rischpler C, Fukushima K, Isoda T, Javadi MS, Dannals RF, Abraham R, et al. Discrepant uptake of the radiolabeled norepinephrine analogues hydroxyephedrine (HED) and metaiodobenzylguanidine (MIBG) in rat hearts. Eur J Nucl Med Mol Imaging 2013;40:1077–83.

    Article  CAS  PubMed  Google Scholar 

  20. Yu M, Bozek J, Lamoy M, Guaraldi M, Silva P, Kagan M, et al. Evaluation of LMI1195, a novel 18F-labeled cardiac neuronal PET imaging agent, in cells and animal models. Circ Cardiovasc Imaging 2011;4:435–43.

    Article  PubMed  Google Scholar 

  21. Vaidyanathan G, Affleck DJ, Alston KL, Zalutsky MR. A tin precursor for the synthesis of no-carrier-added [*I]MIBG and [211At]MABG. J Labelled Comp Radiopharm 2007;50:177–82.

    Article  CAS  Google Scholar 

  22. Ohara K, Vasseur JJ, Smietana M. NIS-promoted guanylation of amines. Tetrahedron Lett 2009;50:1463–5.

    Article  CAS  Google Scholar 

  23. Zhang H, Huang R, Lewis JS, Blasberg RG. Imaging human norepinephrine transporter (hNET) expressing reporter cells and tumors with 4-18F-fluorobenzylguanidine. J Nucl Med 2012;53:1584.

    Article  Google Scholar 

  24. Howman-Giles R, Shaw PJ, Uren RF, Chung DK. Neuroblastoma and other neuroendocrine tumors. Semin Nucl Med 2007;37:286–302.

    Article  PubMed  Google Scholar 

  25. Travin MI. Cardiac neuronal imaging at the edge of clinical application. Cardiol Clin 2009;27:311–27.

    Article  PubMed  Google Scholar 

  26. Vaidyanathan G, Zalutsky MR. No-carrier-added meta-[123I]iodobenzylguanidine: synthesis and preliminary evaluation. Nucl Med Biol 1995;22:61–4.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grant P50 CA84638. We appreciate the assistance of staff from the MSKCC Small Animal Imaging Core Facility for the PET imaging and the MSKCC Radiochemistry & Molecular Imaging Probe Core for 18F production. These MSKCC Cores were supported by the NIH Center grant P30 CA08748. DLJT was supported by the R25T Molecular Imaging Fellowship: Molecular Imaging Training in Oncology (5R25CA096945-07; Principal investigator H. Hricak). We also thank Dr. Diane Abou for PET imaging assistance and valuable discussion. Dedicated to Prof. H. Maecke on the occasion of his 70th birthday.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason S. Lewis.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 167 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, H., Huang, R., Pillarsetty, N. et al. Synthesis and evaluation of 18F-labeled benzylguanidine analogs for targeting the human norepinephrine transporter. Eur J Nucl Med Mol Imaging 41, 322–332 (2014). https://doi.org/10.1007/s00259-013-2558-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-013-2558-9

Keywords

Navigation