Skip to main content

Advertisement

Log in

Breast cancer detection using high-resolution breast PET compared to whole-body PET or PET/CT

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

To compare the performance characteristics of positron emission mammography (PEM) with those of whole-body PET (WBPET) and PET/CT in women with newly diagnosed breast cancer.

Methods

A total of 178 women consented to PEM for presurgical planning in an IRB-approved protocol and also underwent either WBPET (n = 69) or PET/CT (n = 109) imaging, as per usual care at three centers. Tumor detection sensitivity, positive predictive values, and 18F-fluorodeoxyglucose (FDG) uptake were compared between the modalities. The effects of tumor size, type, and grade on detection were examined. The chi-squared or Fisher’s exact tests were used to compare distributions between groups, and McNemar’s test was used to compare distributions for paired data within subject groups, i.e. PEM versus WBPET or PEM versus PET/CT.

Results

The mean age of the women was 59 ± 12 years (median 60 years, range 26–89 years), with a mean invasive index tumor size of 1.6 ± 0.8 cm (median 1.5 cm, range 0.5–4.0 cm). PEM detected more index tumors (61/66, 92 %) than WBPET (37/66, 56 %; p < 0.001) or PET/CT (95/109, 87 % vs. 104/109, 95 % for PEM; p < 0.029). Sensitivity for the detection of additional ipsilateral malignancies was also greater with PEM (7/15, 47 %) than with WBPET (1/15, 6.7 %; p = 0.014) or PET/CT (3/23, 13 % vs. 13/23, 57 % for PEM; p = 0.003). Index tumor detection decreased with decreasing invasive tumor size for both WBPET (p = 0.002) and PET/CT (p < 0.001); PEM was not significantly affected (p = 0.20). FDG uptake, quantified in terms of maximum PEM uptake value, was lowest in ductal carcinoma in situ (median 1.5, range 0.7–3.0) and invasive lobular carcinoma (median 1.5, range 0.7–3.4), and highest in grade III invasive ductal carcinoma (median 3.1, range 1.4–12.9).

Conclusion

PEM was more sensitive than either WBPET or PET/CT in showing index and additional ipsilateral breast tumors and remained highly sensitive for tumors smaller than 1 cm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig 2

Similar content being viewed by others

References

  1. Siegel R, Naishadham D, Jemal A. Cancer statistics, 2012. CA Cancer J Clin. 2012;62(1):10–29. doi:10.3322/caac.20138.

    Article  PubMed  Google Scholar 

  2. Clarke M. Meta-analyses of adjuvant therapies for women with early breast cancer: the Early Breast Cancer Trialists’ Collaborative Group overview. Ann Oncol. 2006;17 Suppl 10:x59–62. doi:10.1093/annonc/mdl238.

    Article  PubMed  Google Scholar 

  3. Liberman L, Morris EA, Dershaw DD, Abramson AF, Tan LK. MR imaging of the ipsilateral breast in women with percutaneously proven breast cancer. AJR Am J Roentgenol. 2003;180(4):901–10.

    Article  PubMed  Google Scholar 

  4. Berg WA, Gutierrez L, Nessaiver MS, Carter WB, Bhargavan M, Lewis RS, et al. Diagnostic accuracy of mammography, clinical examination, US, and MR Imaging in preoperative assessment of breast cancer. Radiology. 2004;233(3):830–49.

    Article  PubMed  Google Scholar 

  5. Fischer U, Kopka L, Grabbe E. Breast carcinoma: effect of preoperative contrast-enhanced MR imaging on the therapeutic approach. Radiology. 1999;213(3):881–8.

    Article  CAS  PubMed  Google Scholar 

  6. Hlawatsch A, Teifke A, Schmidt M, Thelen M. Preoperative assessment of breast cancer: sonography versus MR imaging. AJR Am J Roentgenol. 2002;179(6):1493–501.

    Article  PubMed  Google Scholar 

  7. Solin LJ, Orel SG, Hwang WT, Harris EE, Schnall MD. Relationship of breast magnetic resonance imaging to outcome after breast-conservation treatment with radiation for women with early-stage invasive breast carcinoma or ductal carcinoma in situ. J Clin Oncol. 2008;26(3):386–91. doi:10.1200/JCO.2006.09.5448.

    Article  PubMed  Google Scholar 

  8. Turnbull L, Brown S, Harvey I, Olivier C, Drew P, Napp V, et al. Comparative effectiveness of MRI in breast cancer (COMICE) trial: a randomized controlled trial. Lancet. 2010;375:563–71.

    Article  PubMed  Google Scholar 

  9. Peters NH, van Esser S, van den Bosch MA, Storm RK, Plaisier PW, van Dalen T, et al. Preoperative MRI and surgical management in patients with nonpalpable breast cancer: the MONET – randomised controlled trial. Eur J Cancer. 2011;47(6):879–86. doi:10.1016/j.ejca.2010.11.035.

    Article  CAS  PubMed  Google Scholar 

  10. Dose J, Bleckmann C, Bachmann S, Bohuslavizki KH, Berger J, Jenicke L, et al. Comparison of fluorodeoxyglucose positron emission tomography and “conventional diagnostic procedures” for the detection of distant metastases in breast cancer patients. Nucl Med Commun. 2002;23(9):857–64.

    Article  CAS  PubMed  Google Scholar 

  11. Eubank WB, Mankoff D, Bhattacharya M, Gralow J, Linden H, Ellis G, et al. Impact of FDG PET on defining the extent of disease and on the treatment of patients with recurrent or metastatic breast cancer. AJR Am J Roentgenol. 2004;183(2):479–86.

    Article  PubMed  Google Scholar 

  12. Gallowitsch HJ, Kresnik E, Gasser J, Kumnig G, Igerc I, Mikosch P, et al. F-18 fluorodeoxyglucose positron-emission tomography in the diagnosis of tumor recurrence and metastases in the follow-up of patients with breast carcinoma: a comparison to conventional imaging. Invest Radiol. 2003;38(5):250–6. doi:10.1097/01.RLI.0000063983.86229.f2.

    PubMed  Google Scholar 

  13. Avril N, Rose CA, Schelling M, Dose J, Kuhn W, Bense S, et al. Breast imaging with positron emission tomography and fluorine-18 fluorodeoxyglucose: use and limitations. J Clin Oncol. 2000;18(20):3495–502.

    CAS  PubMed  Google Scholar 

  14. Crippa F, Seregni E, Agresti R, Chiesa C, Pascali C, Bogni A, et al. Association between [18F]fluorodeoxyglucose uptake and postoperative histopathology, hormone receptor status, thymidine labelling index and p53 in primary breast cancer: a preliminary observation. Eur J Nucl Med. 1998;25(10):1429–34.

    Article  CAS  PubMed  Google Scholar 

  15. Tatsumi M, Cohade C, Mourtzikos KA, Fishman EK, Wahl RL. Initial experience with FDG-PET/CT in the evaluation of breast cancer. Eur J Nucl Med Mol Imaging. 2006;33(3):254–62. doi:10.1007/s00259-005-1835-7.

    Article  PubMed  Google Scholar 

  16. Weinberg IN, Beylin D, Zavarzin V, Yarnall S, Stepanov PY, Anashkin E, et al. Positron emission mammography: high-resolution biochemical breast imaging. Technol Cancer Res Treat. 2005;4(1):55–60.

    PubMed  Google Scholar 

  17. MacDonald L, Edwards J, Lewellen T, Haseley D, Rogers J, Kinahan P. Clinical imaging characteristics of the positron emission mammography camera: PEM Flex Solo II. J Nucl Med. 2009;50(10):1666–75. doi:10.2967/jnumed.109.064345.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Berg WA, Weinberg IN, Narayanan D, Lobrano ME, Ross E, Amodei L, et al. High-resolution fluorodeoxyglucose positron emission tomography with compression (“positron emission mammography”) is highly accurate in depicting primary breast cancer. Breast J. 2006;12(4):309–23. doi:10.1111/j.1075-122X.2006.00269.x.

    Article  PubMed  Google Scholar 

  19. Tafra L, Cheng Z, Uddo J, Lobrano MB, Stein W, Berg WA, et al. Pilot clinical trial of 18F-fluorodeoxyglucose positron-emission mammography in the surgical management of breast cancer. Am J Surg. 2005;190(4):628–32. doi:10.1016/j.amjsurg.2005.06.029.

    Article  PubMed  Google Scholar 

  20. Berg WA, Madsen KS, Schilling K, Tartar M, Pisano ED, Larsen LH, et al. Breast cancer: comparative effectiveness of positron emission mammography and MR imaging in presurgical planning for the ipsilateral breast. Radiology. 2011;258(1):59–72. doi:10.1148/radiol.10100454.

    Article  PubMed  Google Scholar 

  21. Narayanan D, Madsen KS, Kalinyak JE, Berg WA. Interpretation of positron emission mammography and MRI by experienced breast imaging radiologists: performance and observer reproducibility. AJR Am J Roentgenol. 2011;196(4):971–81. doi:10.2214/AJR.10.5081.

    Article  PubMed  Google Scholar 

  22. Narayanan D, Madsen KS, Kalinyak JE, Berg WA. Interpretation of positron emission mammography: feature analysis and rates of malignancy. AJR Am J Roentgenol. 2011;196(4):956–70. doi:10.2214/AJR.10.4748.

    Article  PubMed  Google Scholar 

  23. D’Orsi CJ, Bassett LW, Berg WA, Feig SA, Jackson VP, Kopans DB, et al. Breast imaging reporting and data system, BI-RADS: Mammography. 4th ed. Reston: American College of Radiology; 2003.

    Google Scholar 

  24. Groheux D, Espié M, Giacchetti S, Hindié E. Performance of FDG PET/CT in the clinical management of breast cancer. Radiology. 2013;266(2):388–405. doi:10.1148/radiol.12110853.

    Article  PubMed  Google Scholar 

  25. National Comprehensive Cancer Network. http://www.nccn.org/professionals/physician_gls/pdf/breast.pdf accessed 7-7-2013.

  26. Groheux D, Giacchetti S, Delord M, Hindie E, Vercellino L, Cuvier C, et al. 18F-FDG PET/CT in staging patients with locally advanced or inflammatory breast cancer: comparison to conventional staging. J Nucl Med. 2013;54(1):5–11. doi:10.2967/jnumed.112.106864.

    Article  PubMed  Google Scholar 

  27. Groheux D, Hindie E, Delord M, Giacchetti S, Hamy AS, de Bazelaire C, et al. Prognostic impact of 18FDG-PET-CT findings in clinical stage III and IIB breast cancer. J Natl Cancer Inst. 2012;104(24):1879–87. doi:10.1093/jnci/djs451.

    Article  PubMed  Google Scholar 

  28. Eo JS, Chun IK, Paeng JC, Kang KW, Lee SM, Han W, et al. Imaging sensitivity of dedicated positron emission mammography in relation to tumor size. Breast. 2012;21(1):66–71. doi:10.1016/j.breast.2011.08.002.

    Article  PubMed  Google Scholar 

  29. Avril N, Bense S, Ziegler SI, Dose J, Weber W, Laubenbacher C, et al. Breast imaging with fluorine-18-FDG PET: quantitative image analysis. J Nucl Med. 1997;38(8):1186–91.

    CAS  PubMed  Google Scholar 

  30. Avril N, Menzel M, Dose J, Schelling M, Weber W, Janicke F, et al. Glucose metabolism of breast cancer assessed by 18F-FDG PET: histologic and immunohistochemical tissue analysis. J Nucl Med. 2001;42(1):9–16.

    CAS  PubMed  Google Scholar 

  31. Veronesi U, De Cicco C, Galimberti VE, Fernandez JR, Rotmensz N, Viale G, et al. A comparative study on the value of FDG-PET and sentinel node biopsy to identify occult axillary metastases. Ann Oncol. 2007;18(3):473–8. doi:10.1093/annonc/mdl425.

    Article  CAS  PubMed  Google Scholar 

  32. Groheux D, Giacchetti S, Moretti JL, Porcher R, Espie M, Lehmann-Che J, et al. Correlation of high 18F-FDG uptake to clinical, pathological and biological prognostic factors in breast cancer. Eur J Nucl Med Mol Imaging. 2011;38(3):426–35. doi:10.1007/s00259-010-1640-9.

    Article  PubMed  Google Scholar 

  33. Wang CL, MacDonald LR, Rogers JV, Aravkin A, Haseley DR, Beatty JD. Positron emission mammography: correlation of estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2 status and 18F-FDG. AJR Am J Roentgenol. 2011;197(2):W247–55. doi:10.2214/AJR.11.6478.

    Article  PubMed  Google Scholar 

  34. Rieber A, Schirrmeister H, Gabelmann A, Nuessle K, Reske S, Kreienberg R, et al. Pre-operative staging of invasive breast cancer with MR mammography and/or PET: boon or bunk? Br J Radiol. 2002;75(898):789–98.

    CAS  PubMed  Google Scholar 

  35. Sardanelli F, Giuseppetti GM, Panizza P, Bazzocchi M, Fausto A, Simonetti G, et al. Sensitivity of MRI versus mammography for detecting foci of multifocal, multicentric breast cancer in fatty and dense breasts using the whole-breast pathologic examination as a gold standard. AJR Am J Roentgenol. 2004;183(4):1149–57.

    Article  PubMed  Google Scholar 

  36. Berg WA, Madsen KS, Schilling K, Tartar M, Pisano ED, Larsen LH, et al. Comparative effectiveness of positron emission mammography and MRI in the contralateral breast of women with newly diagnosed breast cancer. AJR Am J Roentgenol. 2012;198(1):219–32. doi:10.2214/AJR.10.6342.

    Article  PubMed  Google Scholar 

  37. Buggi F, Folli S, Curcio A, Casadei-Giunchi D, Rocca A, Pietri E, et al. Multicentric/multifocal breast cancer with a single histotype: is the biological characterization of all individual foci justified? Ann Oncol. 2012;23(8):2042–6. doi:10.1093/annonc/mdr570.

    Article  CAS  PubMed  Google Scholar 

  38. Lee SG, Orel SG, Woo IJ, Cruz-Jove E, Putt ME, Solin LJ, et al. MR imaging screening of the contralateral breast in patients with newly diagnosed breast cancer: preliminary results. Radiology. 2003;226(3):773–8.

    Article  PubMed  Google Scholar 

  39. Liberman L, Morris EA, Kim CM, Kaplan JB, Abramson AF, Menell JH, et al. MR imaging findings in the contralateral breast of women with recently diagnosed breast cancer. AJR Am J Roentgenol. 2003;180(2):333–41.

    Article  PubMed  Google Scholar 

  40. Shimoda W, Hayashi M, Murakami K, Oyama T, Sunagawa M. The relationship between FDG uptake in PET scans and biological behavior in breast cancer. Breast Cancer. 2007;14(3):260–8.

    Article  PubMed  Google Scholar 

  41. Bevers TB, Anderson BO, Bonaccio E, Buys S, Daly MB, Dempsey PJ, et al. NCCN clinical practice guidelines in oncology: breast cancer screening and diagnosis. J Natl Compr Canc Netw. 2009;7(10):1060–96.

    PubMed  Google Scholar 

  42. Kalinyak JE, Schilling K, Berg WA, Narayanan D, Mayberry JP, Rai R, et al. PET-guided breast biopsy. Breast J. 2011;17(2):143–51. doi:10.1111/j.1524-4741.2010.01044.x.

    Article  PubMed  Google Scholar 

  43. Kubota K, Itoh M, Ozaki K, Ono S, Tashiro M, Yamaguchi K, et al. Advantage of delayed whole-body FDG-PET imaging for tumour detection. Eur J Nucl Med. 2001;28(6):696–703.

    Article  CAS  PubMed  Google Scholar 

Download references

Financial relationships and conflicts of interest

This research was supported by the National Institutes of Health (grant 5 R44 CA103102-05) and Naviscan. Site principle investigators and coauthors (K. Schilling, M. Tartar, W. Berg) received payment to cover the research costs on a per patient enrolled basis. W. Berg also received payment for hours provided as Head Principal Investigator to oversee the study design and the site principle investigators. Her payment was not linked to outcome results. K. Madsen works for Certus, Intl, who was contracted by Naviscan Inc, to be the repository of the original data from the research sites and to provide independent statistical analysis. M. Narayanan was employed by Naviscan and holds stock options. J. Kalinyak was principle investigator of the NIH grant, was employed as Chief Medical Officer at Naviscan, and coordinated the study; however, the site principle investigators and Certus maintained complete control over the original data at all times and have participated and reviewed the results in all the resulting publications.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judith E. Kalinyak.

Additional information

Presented at the 2010 Assembly of the Radiologic Society of North America, Chicago, IL

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalinyak, J.E., Berg, W.A., Schilling, K. et al. Breast cancer detection using high-resolution breast PET compared to whole-body PET or PET/CT. Eur J Nucl Med Mol Imaging 41, 260–275 (2014). https://doi.org/10.1007/s00259-013-2553-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-013-2553-1

Keywords

Navigation