Skip to main content
Log in

Preclinical evaluation of BAY 1075553, a novel 18F-labelled inhibitor of prostate-specific membrane antigen for PET imaging of prostate cancer

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Prostate-specific membrane antigen (PSMA) is a transmembrane protein overexpressed in prostate cancer and is therefore being explored as a biomarker for diagnosing and staging of the disease. Here we report preclinical data on BAY 1075553 (a 9:1 mixture of (2S,4S)- and (2R,4S)-2-[18F]fluoro-4-phosphonomethyl-pentanedioic acid), a novel 18F-labelled small molecule inhibitor of PSMA enzymatic activity, which can be efficiently synthesized from a direct radiolabelling precursor.

Methods

The 18F-radiolabelled stereoisomers of 2-[18F]fluoro-4-(phosphonomethyl)-pentanedioic acid were synthesized from their respective isomerically pure precursors dimethyl 2-{[bis(benzyloxy)phosphoryl]methyl}-4-(tosyloxy)pentanedioate. In vivo positron emission tomography (PET) imaging and biodistribution studies were conducted in mice bearing LNCaP, 22Rv1 and PC-3 tumours. Pharmacokinetic parameters and dosimetry estimates were calculated based on biodistribution studies in rodents. For non-clinical safety assessment (safety pharmacology, toxicology) to support a single-dose human microdose study, off-target effects in vitro, effects on vital organ functions (cardiovascular in dogs, nervous system in rats), mutagenicity screens and an extended single-dose study in rats were conducted with the non-radioactive racemic analogue of BAY 1075553.

Results

BAY 1075553 showed high tumour accumulation specific to PSMA-positive tumour-bearing mice and was superior to other stereoisomers tested. Fast clearance of BAY 1075553 resulted overall in low background signals in other organs except for high uptake into kidney and bladder which was mainly caused by renal elimination of BAY 1075553. A modest uptake into bone was observed which decreased over time indicating organ-specific uptake as opposed to defluorination of BAY 1075553 in vivo. Biodistribution studies found highest organ doses for kidneys and the urinary bladder wall resulting in a projected effective dose (ED) in humans of 0.0219 mSv/MBq. Non-clinical safety studies did not show off-target activity, effects on vital organs function or dose-dependent adverse effects.

Conclusion

BAY 1075553 was identified as a promising PET tracer for PSMA-positive prostate tumours in preclinical studies. BAY 1075553 can be produced using a robust, direct radiosynthesis procedure. Pharmacokinetic, toxicology and safety pharmacology studies support the application of BAY 1075553 in a first-in-man microdose study with single i.v. administration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Jemal A, Siegel R, Xu J, Ward E. Cancer statistics, 2010. CA Cancer J Clin. 2010;60:277–300.

    Article  PubMed  Google Scholar 

  2. Rinnab L, Simon J, Hautmann RE, Cronauer MV, Hohl K, Buck AK, et al. [(11)C]choline PET/CT in prostate cancer patients with biochemical recurrence after radical prostatectomy. World J Urol. 2009;27:619–25.

    Article  PubMed  CAS  Google Scholar 

  3. Beheshti M, Vali R, Waldenberger P, Fitz F, Nader M, Loidl W, et al. Detection of bone metastases in patients with prostate cancer by 18F fluorocholine and 18F fluoride PET-CT: a comparative study. Eur J Nucl Med Mol Imaging. 2008;35:1766–74.

    Article  PubMed  Google Scholar 

  4. Kotzerke J, Volkmer BG, Glatting G, van den Hoff J, Gschwend JE, Messer P, et al. Intraindividual comparison of [11C]acetate and [11C]choline PET for detection of metastases of prostate cancer. Nuklearmedizin. 2003;42:25–30.

    PubMed  CAS  Google Scholar 

  5. Castellucci P, Fuccio C, Nanni C, Santi I, Rizzello A, Lodi F, et al. Influence of trigger PSA and PSA kinetics on 11C-choline PET/CT detection rate in patients with biochemical relapse after radical prostatectomy. J Nucl Med. 2009;50:1394–400.

    Article  PubMed  Google Scholar 

  6. Iason. IASOcholine 1,0 GBq/ml, Injektionslösung, Fachinformation Deutschland. [http://www.iason.eu/fileadmin/user_upload/SPC/iasocholine%20germany.pdf].

  7. Gambhir SS, Czernin J, Schwimmer J, Silverman DH, Coleman RE, Phelps ME. A tabulated summary of the FDG PET literature. J Nucl Med. 2001;42:1S–93.

    PubMed  CAS  Google Scholar 

  8. Oyama N, Akino H, Suzuki Y, Kanamaru H, Sadato N, Yonekura Y, et al. The increased accumulation of [18F]fluorodeoxyglucose in untreated prostate cancer. Jpn J Clin Oncol. 1999;29:623–9.

    Article  PubMed  CAS  Google Scholar 

  9. Schwarzenbock S, Souvatzoglou M, Krause BJ. Choline PET and PET/CT in primary diagnosis and staging of prostate cancer. Theranostics. 2012;2:318–30.

    Article  PubMed  CAS  Google Scholar 

  10. Sutinen E, Nurmi M, Roivainen A, Varpula M, Tolvanen T, Lehikoinen P, et al. Kinetics of [(11)C]choline uptake in prostate cancer: a PET study. Eur J Nucl Med Mol Imaging. 2004;31:317–24.

    Article  PubMed  CAS  Google Scholar 

  11. Li Y, Cozzi PJ, Russell PJ. Promising tumor-associated antigens for future prostate cancer therapy. Med Res Rev. 2010;30:67–101.

    PubMed  Google Scholar 

  12. Horoszewicz JS, Kawinski E, Murphy GP. Monoclonal antibodies to a new antigenic marker in epithelial prostatic cells and serum of prostatic cancer patients. Anticancer Res. 1987;7:927–35.

    PubMed  CAS  Google Scholar 

  13. Wright Jr GL, Haley C, Beckett ML, Schellhammer PF. Expression of prostate-specific membrane antigen in normal, benign, and malignant prostate tissues. Urol Oncol. 1995;1:18–28.

    Article  PubMed  Google Scholar 

  14. Silver DA, Pellicer I, Fair WR, Heston WD, Cordon-Cardo C. Prostate-specific membrane antigen expression in normal and malignant human tissues. Clin Cancer Res. 1997;3:81–5.

    PubMed  CAS  Google Scholar 

  15. Sweat SD, Pacelli A, Murphy GP, Bostwick DG. Prostate-specific membrane antigen expression is greatest in prostate adenocarcinoma and lymph node metastases. Urology. 1998;52:637–40.

    Article  PubMed  CAS  Google Scholar 

  16. Bostwick DG, Pacelli A, Blute M, Roche P, Murphy GP. Prostate specific membrane antigen expression in prostatic intraepithelial neoplasia and adenocarcinoma: a study of 184 cases. Cancer. 1998;82:2256–61.

    Article  PubMed  CAS  Google Scholar 

  17. Wright Jr GL, Grob BM, Haley C, Grossman K, Newhall K, Petrylak D, et al. Upregulation of prostate-specific membrane antigen after androgen-deprivation therapy. Urology. 1996;48:326–34.

    Article  PubMed  Google Scholar 

  18. Chang SS, Gaudin PB, Reuter VE, Heston WD. Prostate-specific membrane antigen: present and future applications. Urology. 2000;55:622–9.

    Article  PubMed  CAS  Google Scholar 

  19. Ananias HJ, van den Heuvel MC, Helfrich W, de Jong IJ. Expression of the gastrin-releasing peptide receptor, the prostate stem cell antigen and the prostate-specific membrane antigen in lymph node and bone metastases of prostate cancer. Prostate. 2009;69:1101–8.

    Article  PubMed  Google Scholar 

  20. Mannweiler S, Amersdorfer P, Trajanoski S, Terrett JA, King D, Mehes G. Heterogeneity of prostate-specific membrane antigen (PSMA) expression in prostate carcinoma with distant metastasis. Pathol Oncol Res. 2009;15:167–72.

    Article  PubMed  CAS  Google Scholar 

  21. Mhawech-Fauceglia P, Zhang S, Terracciano L, Sauter G, Chadhuri A, Herrmann FR, et al. Prostate-specific membrane antigen (PSMA) protein expression in normal and neoplastic tissues and its sensitivity and specificity in prostate adenocarcinoma: an immunohistochemical study using mutiple tumour tissue microarray technique. Histopathology. 2007;50:472–83.

    Article  PubMed  CAS  Google Scholar 

  22. Mease RC. Radionuclide based imaging of prostate cancer. Curr Top Med Chem. 2010;10:1600–16.

    Article  PubMed  CAS  Google Scholar 

  23. Tagawa ST, Milowsky MI, Morris MJ, Vallabhajosula S, Christos PJ, Akhtar NH, et al. Phase II study of lutetium-177 labeled anti-prostate-specific membrane antigen (PSMA) monoclonal antibody J591 for metastatic castration-resistant prostate cancer. Clin Cancer Res. 2013.

  24. Holland JP, Divilov V, Bander NH, Smith-Jones PM, Larson SM, Lewis JS. 89Zr-DFO-J591 for immunoPET of prostate-specific membrane antigen expression in vivo. J Nucl Med. 2010;51:1293–300.

    Article  PubMed  CAS  Google Scholar 

  25. Robinson MB, Blakely RD, Couto R, Coyle JT. Hydrolysis of the brain dipeptide N-acetyl-L-aspartyl-L-glutamate. Identification and characterization of a novel N-acetylated alpha-linked acidic dipeptidase activity from rat brain. J Biol Chem. 1987;262:14498–506.

    PubMed  CAS  Google Scholar 

  26. Slusher BS, Vornov JJ, Thomas AG, Hurn PD, Harukuni I, Bhardwaj A, et al. Selective inhibition of NAALADase, which converts NAAG to glutamate, reduces ischemic brain injury. Nat Med. 1999;5:1396–402.

    Article  PubMed  CAS  Google Scholar 

  27. Banerjee SR, Pullambhatla M, Byun Y, Nimmagadda S, Green G, Fox JJ, et al. 68Ga-labeled inhibitors of prostate-specific membrane antigen (PSMA) for imaging prostate cancer. J Med Chem. 2010;53:5333–41.

    Article  PubMed  CAS  Google Scholar 

  28. Chen Y, Foss CA, Byun Y, Nimmagadda S, Pullambhatla M, Fox JJ, et al. Radiohalogenated prostate-specific membrane antigen (PSMA)-based ureas as imaging agents for prostate cancer. J Med Chem. 2008;51:7933–43.

    Article  PubMed  CAS  Google Scholar 

  29. Lapi SE, Wahnishe H, Pham D, Wu LY, Nedrow-Byers JR, Liu T, et al. Assessment of an 18F-labeled phosphoramidate peptidomimetic as a new prostate-specific membrane antigen-targeted imaging agent for prostate cancer. J Nucl Med. 2009;50:2042–8.

    Article  PubMed  CAS  Google Scholar 

  30. Maresca KP, Hillier SM, Femia FJ, Keith D, Barone C, Joyal JL, et al. A series of halogenated heterodimeric inhibitors of prostate specific membrane antigen (PSMA) as radiolabeled probes for targeting prostate cancer. J Med Chem. 2009;52:347–57.

    Article  PubMed  CAS  Google Scholar 

  31. Mease RC, Dusich CL, Foss CA, Ravert HT, Dannals RF, Seidel J, et al. N-[N-[(S)-1,3-Dicarboxypropyl]carbamoyl]-4-[18F]fluorobenzyl-L-cysteine, [18F]DCFBC: a new imaging probe for prostate cancer. Clin Cancer Res. 2008;14:3036–43.

    Article  PubMed  CAS  Google Scholar 

  32. Barrett JA, Coleman RE, Goldsmith SJ, Vallabhajosula S, Petry NA, Cho S, et al. First-in-man evaluation of 2 high-affinity PSMA-avid small molecules for imaging prostate cancer. J Nucl Med. 2013;54:380–7.

    Article  PubMed  CAS  Google Scholar 

  33. Cho SY, Gage KL, Mease RC, Senthamizhchelvan S, Holt DP, Jeffrey-Kwanisai A, et al. Biodistribution, tumor detection, and radiation dosimetry of 18F-DCFBC, a low-molecular-weight inhibitor of prostate-specific membrane antigen, in patients with metastatic prostate cancer. J Nucl Med. 2012;53:1883–91.

    Article  PubMed  CAS  Google Scholar 

  34. Graham K, Lesche R, Gromov AV, Böhnke N, Schäfer M, Hassfeld J, et al. Radiofluorinated derivatives of 2-(phosphonomethyl)pentanedioic acid as inhibitors of prostate specific membrane antigen (PSMA) for the imaging of prostate cancer. J Med Chem. 2012;55:9510–20.

    Article  PubMed  CAS  Google Scholar 

  35. Graham K, Lesche R, Gromov AV, Böhnke N, Hassfeld J, Kettschau G. Prostate specific membrane antigen inhibitors. Patent WO 2011/073286, 2011.

  36. Graham K, Ede S. Derivatization of radiopharmaceuticals. Patent WO2012/104225, 2012.

  37. Graham K, Kettschau G, Gromov A, Dinkelborg L. Development of a fast robust derivatization method of an extremely polar PET radiopharmaceutical; a critical aspect for starting a clinical trial. Tetrahedron Lett. 2013;54:2583–6.

    Article  CAS  Google Scholar 

  38. Stabin MG, Siegel JA. Physical models and dose factors for use in internal dose assessment. Health Phys. 2003;85:294–310.

    Article  PubMed  CAS  Google Scholar 

  39. Stabin MG, da Luz LC. Decay data for internal and external dose assessment. Health Phys. 2002;83:471–5.

    Article  PubMed  CAS  Google Scholar 

  40. Himmel HM. Suitability of commonly used excipients for electrophysiological in-vitro safety pharmacology assessment of effects on hERG potassium current and on rabbit Purkinje fiber action potential. J Pharmacol Toxicol Methods. 2007;56:145–58.

    Article  PubMed  CAS  Google Scholar 

  41. Hamon J, Whitebread S, Techer-Etienne V, Le Coq H, Azzaoui K, Urban L. In vitro safety pharmacology profiling: what else beyond hERG? Future Med Chem. 2009;1:645–65.

    Article  PubMed  CAS  Google Scholar 

  42. Himmel HM, Hoffmann M. QTc shortening with a new investigational cancer drug: a brief case study. J Pharmacol Toxicol Methods. 2010;62:72–81.

    Article  PubMed  CAS  Google Scholar 

  43. Tsai G, Slusher BS, Sim L, Coyle JT. Immunocytochemical distribution of N-acetylaspartylglutamate in the rat forebrain and glutamatergic pathways. J Chem Neuroanat. 1993;6:277–92.

    Article  PubMed  CAS  Google Scholar 

  44. Hillier SM, Kern AM, Maresca KP, Marquis JC, Eckelman WC, Joyal JL, et al. 123I-MIP-1072, a small-molecule inhibitor of prostate-specific membrane antigen, is effective at monitoring tumor response to taxane therapy. J Nucl Med. 2011;52:1087–93.

    Article  PubMed  CAS  Google Scholar 

  45. Ghosh A, Wang X, Klein E, Heston WD. Novel role of prostate-specific membrane antigen in suppressing prostate cancer invasiveness. Cancer Res. 2005;65:727–31.

    Article  PubMed  CAS  Google Scholar 

  46. Radiation dose to patients from radiopharmaceuticals (addendum 2 to ICRP publication 53). Ann ICRP. 1998;28:1–126.

    Google Scholar 

  47. Foss CA, Mease RC, Fan H, Wang Y, Ravert HT, Dannals RF, et al. Radiolabeled small-molecule ligands for prostate-specific membrane antigen: in vivo imaging in experimental models of prostate cancer. Clin Cancer Res. 2005;11:4022–8.

    Article  PubMed  CAS  Google Scholar 

  48. Misra P, Humblet V, Pannier N, Maison W, Frangioni JV. Production of multimeric prostate-specific membrane antigen small-molecule radiotracers using a solid-phase 99mTc preloading strategy. J Nucl Med. 2007;48:1379–89.

    Article  PubMed  CAS  Google Scholar 

  49. Banerjee SR, Foss CA, Castanares M, Mease RC, Byun Y, Fox JJ, et al. Synthesis and evaluation of technetium-99m- and rhenium-labeled inhibitors of the prostate-specific membrane antigen (PSMA). J Med Chem. 2008;51:4504–17.

    Article  PubMed  CAS  Google Scholar 

  50. Hamacher K. Synthesis of N.C.A. cis- and trans-4-[18F]fluoro-l-proline, radiotracers for PET-investigation of disordered matrix protein synthesis. J Labelled Comp Radiopharm. 1999;42:1135–44.

    Article  CAS  Google Scholar 

  51. Krasikova RN, Kuznetsova OF, Fedorova OS, Belokon YN, Maleev VI, Mu L, et al. 4-[18F]fluoroglutamic acid (BAY 85–8050), a new amino acid radiotracer for PET imaging of tumors: synthesis and in vitro characterization. J Med Chem. 2011;54:406–10.

    Article  PubMed  CAS  Google Scholar 

  52. Zengerling F, Schrader AJ, Schrader M, Jentzmik F. Diagnostic relevance of choline-PET/CT in patients with prostate cancer. Aktuelle Urol. 2012;43:49–54.

    Article  PubMed  CAS  Google Scholar 

  53. EMEA. Guidance on non-clinical safety studies for the conduct of human clinical trials and marketing authorization for pharmaceuticals, CPMP/ICH/286/95. 2009.

  54. Langsteger W, Kunit T, Haim S, Nader M, Valencia R, Lesche R, et al. BAY 1075553 PET/CT in the assessment of prostate cancer: safety, tolerability and biodistribution—phase I first in human study results. J Nucl Med. 2012;53(Suppl 1):1125.

    Google Scholar 

  55. Beheshti M, Langsteger W, Sommerhuber A, Steinmair M, Wolf I, Valencia R, et al. BAY 1075553 PET/CT in staging and re-staging of prostate cancer patients—phase I study and comparison to 18F-FCH. J Nucl Med. 2012;53(Suppl 1):272.

    Google Scholar 

Download references

Acknowledgments

We would like to acknowledge the excellent technical support of Selahattin Ede, Marion Zerna, Mario Mandau, Oliver Schenk, Uwe Rettig, Yvonne Duchstein, Eva-Maria Bickel, Jörg Jannsen, Herbert Himmel, and Michael Hoffmann. This work was conducted at and financially supported by Bayer Healthcare.

Conflicts of interest

All authors are or were employees of Bayer Healthcare.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ralf Lesche or Keith Graham.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figure 1

(DOC 120 kb)

Supplementary Figure 2

(DOC 91 kb)

Supplementary Figure 3

(DOC 104 kb)

Supplementary Table 1

(DOC 44 kb)

Supplementary Table 2

(DOC 90 kb)

Supplementary Table 3

(DOC 31 kb)

Supplementary Table 4

(DOC 29 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lesche, R., Kettschau, G., Gromov, A.V. et al. Preclinical evaluation of BAY 1075553, a novel 18F-labelled inhibitor of prostate-specific membrane antigen for PET imaging of prostate cancer. Eur J Nucl Med Mol Imaging 41, 89–101 (2014). https://doi.org/10.1007/s00259-013-2527-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-013-2527-3

Keywords

Navigation