Skip to main content

Advertisement

Log in

Robustness of intratumour 18F-FDG PET uptake heterogeneity quantification for therapy response prediction in oesophageal carcinoma

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Intratumour uptake heterogeneity in PET quantified in terms of textural features for response to therapy has been investigated in several studies, including assessment of their robustness for reconstruction and physiological reproducibility. However, there has been no thorough assessment of the potential impact of preprocessing steps on the resulting quantification and its predictive value. The goal of this work was to assess the robustness of PET heterogeneity in textural features for delineation of functional volumes and partial volume correction (PVC).

Methods

This retrospective analysis included 50 patients with oesophageal cancer. PVC of each PET image was performed. Tumour volumes were determined using fixed and adaptive thresholding, and the fuzzy locally adaptive Bayesian algorithm, and heterogeneity was quantified using local and regional textural features. Differences in the absolute values of the image-derived parameters considered were assessed using Bland-Altman analysis. The impact on their predictive value for the identification of patient nonresponders was assessed by comparing areas under the receiver operating characteristic curves.

Results

Heterogeneity parameters were more dependent on delineation than on PVC. The parameters most sensitive to delineation and PVC were regional ones (intensity variability and size zone variability), whereas local parameters such as entropy and homogeneity were the most robust. Despite the large differences in absolute values obtained from different delineation methods or after PVC, these differences did not necessarily translate into a significant impact on their predictive value.

Conclusion

Parameters such as entropy, homogeneity, dissimilarity (for local heterogeneity characterization) and zone percentage (for regional characterization) should be preferred. This selection is based on a demonstrated high differentiation power in terms of predicting response, as well as a significant robustness with respect to the delineation method used and the partial volume effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Krause BJ, Schwarzenbock S, Souvatzoglou M. FDG PET and PET/CT. Recent Results Cancer Res. 2013;187:351–69.

    Article  PubMed  Google Scholar 

  2. Jarritt PH, Carson KJ, Hounsell AR, Visvikis D. The role of PET/CT scanning in radiotherapy planning. Br J Radiol. 2006;79(Spec No 1):S27–35.

    Article  PubMed  Google Scholar 

  3. Herrmann K, Benz MR, Krause BJ, Pomykala KL, Buck AK, Czernin J. (18)F-FDG-PET/CT in evaluating response to therapy in solid tumors: where we are and where we can go. Q J Nucl Med Mol Imaging. 2011;55:620–32.

    PubMed  CAS  Google Scholar 

  4. Liao S, Penney BC, Wroblewski K, Zhang H, Simon CA, Kampalath R, et al. Prognostic value of metabolic tumor burden on 18F-FDG PET in nonsurgical patients with non-small cell lung cancer. Eur J Nucl Med Mol Imaging. 2012;39:27–38.

    Article  PubMed  CAS  Google Scholar 

  5. Hatt M, Visvikis D, Pradier O, Cheze-le Rest C. Baseline (18)F-FDG PET image-derived parameters for therapy response prediction in oesophageal cancer. Eur J Nucl Med Mol Imaging. 2011;38:1595–606.

    Article  PubMed  Google Scholar 

  6. Deron P, Mertens K, Goethals I, Rottey S, Duprez F, De Neve W, et al. Metabolic tumour volume. Prognostic value in locally advanced squamous cell carcinoma of the head and neck. Nuklearmedizin. 2011;50:141–6.

    Article  PubMed  CAS  Google Scholar 

  7. Melton GB, Lavely WC, Jacene HA, Schulick RD, Choti MA, Wahl RL, et al. Efficacy of preoperative combined 18-fluorodeoxyglucose positron emission tomography and computed tomography for assessing primary rectal cancer response to neoadjuvant therapy. J Gastrointest Surg. 2007;11:961–9. discussion 969.

    Article  PubMed  Google Scholar 

  8. Hatt M, Groheux D, Martineau A, Espie M, Hindie E, Giacchetti S, et al. Comparison between 18F-FDG PET image-derived indices for early prediction of response to neoadjuvant chemotherapy in breast cancer. J Nucl Med. 2013;54:341–9.

    Article  PubMed  CAS  Google Scholar 

  9. Lee HY, Hyun SH, Lee KS, Kim BT, Kim J, Shim YM, et al. Volume-based parameter of 18F-FDG PET/CT in malignant pleural mesothelioma: prediction of therapeutic response and prognostic implications. Ann Surg Oncol. 2010;17:2787–94.

    Article  PubMed  Google Scholar 

  10. Cazaentre T, Morschhauser F, Vermandel M, Betrouni N, Prangere T, Steinling M, et al. Pre-therapy 18F-FDG PET quantitative parameters help in predicting the response to radioimmunotherapy in non-Hodgkin lymphoma. Eur J Nucl Med Mol Imaging. 2010;37:494–504.

    Article  PubMed  CAS  Google Scholar 

  11. Basu S, Kwee TC, Gatenby R, Saboury B, Torigian DA, Alavi A. Evolving role of molecular imaging with PET in detecting and characterizing heterogeneity of cancer tissue at the primary and metastatic sites, a plausible explanation for failed attempts to cure malignant disorders. Eur J Nucl Med Mol Imaging. 2011;38:987–91.

    Article  PubMed  Google Scholar 

  12. Visvikis D, Hatt M, Tixier F, Cheze Le Rest C. The age of reason for FDG PET image-derived indices. Eur J Nucl Med Mol Imaging. 2012;39:1670–2.

    Article  PubMed  Google Scholar 

  13. Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, van Stiphout R G, Granton P, et al. Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer. 2012;48:441–6.

    Google Scholar 

  14. Chicklore S, Goh V, Siddique M, Roy A, Marsden PK, Cook GJ. Quantifying tumour heterogeneity in 18F-FDG PET/CT imaging by texture analysis. Eur J Nucl Med Mol Imaging. 2013;40:133–40.

    Article  PubMed  Google Scholar 

  15. Davnall F, Yip CS, Ljungqvist G, Selmi M, Ng F, Sanghera B, et al. Assessment of tumor heterogeneity: an emerging imaging tool for clinical practice? Insights Imaging. 2012;3:573–89.

    Article  PubMed  Google Scholar 

  16. Cook GJ, Yip C, Siddique M, Goh V, Chicklore S, Roy A, et al. Are pretreatment 18F-FDG PET tumor textural features in non-small cell lung cancer associated with response and survival after chemoradiotherapy? J Nucl Med. 2013;54:19–26.

    Article  PubMed  Google Scholar 

  17. O’Sullivan F, Wolsztynski E, O’Sullivan J, Richards T, Conrad E, Eary J. A statistical modeling approach to the analysis of spatial patterns of FDG-PET uptake in human sarcoma. IEEE Trans Med Imaging. 2011;30:2059–71.

    Article  PubMed  Google Scholar 

  18. Tixier F, Le Rest CC, Hatt M, Albarghach N, Pradier O, Metges JP, et al. Intratumor heterogeneity characterized by textural features on baseline 18F-FDG PET images predicts response to concomitant radiochemotherapy in esophageal cancer. J Nucl Med. 2011;52:369–78.

    Article  PubMed  Google Scholar 

  19. Tan S, Kligerman S, Chen W, Lu M, Kim G, Feigenberg S, et al. Spatial-temporal [(18)F]FDG-PET features for predicting pathologic response of esophageal cancer to neoadjuvant chemoradiation therapy. Int J Radiat Oncol Biol Phys. 2013;85:1375–82.

    Article  PubMed  Google Scholar 

  20. El Naqa I, Grigsby P, Apte A, Kidd E, Donnelly E, Khullar D, et al. Exploring feature-based approaches in PET images for predicting cancer treatment outcomes. Pattern Recognit. 2009;42:1162–71.

    Article  PubMed  Google Scholar 

  21. Miller TR, Pinkus E, Dehdashti F, Grigsby PW. Improved prognostic value of 18F-FDG PET using a simple visual analysis of tumor characteristics in patients with cervical cancer. J Nucl Med. 2003;44:192–7.

    PubMed  Google Scholar 

  22. van Velden FH, Cheebsumon P, Yaqub M, Smit EF, Hoekstra OS, Lammertsma AA, et al. Evaluation of a cumulative SUV-volume histogram method for parameterizing heterogeneous intratumoural FDG uptake in non-small cell lung cancer PET studies. Eur J Nucl Med Mol Imaging. 2011;38:1636–47.

    Article  PubMed  Google Scholar 

  23. Galavis PE, Hollensen C, Jallow N, Paliwal B, Jeraj R. Variability of textural features in FDG PET images due to different acquisition modes and reconstruction parameters. Acta Oncol. 2010;49:1012–6.

    Article  PubMed  Google Scholar 

  24. Tixier F, Hatt M, Cheze Le Rest C, Le Pogam A, Corcos L, Visvikis D. Reproducibility of tumor uptake heterogeneity characterization through textural feature analysis in 18F-FDG PET imaging. J Nucl Med. 2012;53:693–700.

    Article  PubMed  Google Scholar 

  25. Visvikis D, Turzo A, Gouret A, Damine P, Lamare F, Bizais Y, et al. Characterisation of SUV accuracy in FDG PET using 3-D RAMLA and the Philips Allegro PET scanner. J Nucl Med. 2004;45:103.

    Google Scholar 

  26. Therasse P, Arbuck SG, Eisenhauer EA, Wanders J, Kaplan RS, Rubinstein L, et al. New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst. 2000;92:205–16.

    Article  PubMed  CAS  Google Scholar 

  27. Erdi YE, Mawlawi O, Larson SM, Imbriaco M, Yeung H, Finn R, et al. Segmentation of lung lesion volume by adaptive positron emission tomography image thresholding. Cancer. 1997;80:2505–9.

    Article  PubMed  CAS  Google Scholar 

  28. Nestle U, Kremp S, Schaefer-Schuler A, Sebastian-Welsch C, Hellwig D, Rube C, et al. Comparison of different methods for delineation of 18F-FDG PET-positive tissue for target volume definition in radiotherapy of patients with non-small cell lung cancer. J Nucl Med. 2005;46:1342–8.

    PubMed  Google Scholar 

  29. Hatt M, Cheze le Rest C, Turzo A, Roux C, Visvikis D. A fuzzy locally adaptive Bayesian segmentation approach for volume determination in PET. IEEE Trans Med Imaging. 2009;28:881–93.

    Article  PubMed  Google Scholar 

  30. Hatt M, Cheze Le Rest C, Albarghach N, Pradier O, Visvikis D. PET functional volume delineation: a robustness and repeatability study. Eur J Nucl Med Mol Imaging. 2011;38:663–72.

    Article  PubMed  Google Scholar 

  31. Hatt M, Cheze-Le Rest C, Aboagye EO, Kenny LM, Rosso L, Turkheimer FE, et al. Reproducibility of 18F-FDG and 3′-deoxy-3′-18F-fluorothymidine PET tumor volume measurements. J Nucl Med. 2010;51:1368–76.

    Article  PubMed  CAS  Google Scholar 

  32. Hatt M, Cheze le Rest C, Descourt P, Dekker A, De Ruysscher D, Oellers M, et al. Accurate automatic delineation of heterogeneous functional volumes in positron emission tomography for oncology applications. Int J Radiat Oncol Biol Phys. 2010;77:301–8.

    Article  PubMed  Google Scholar 

  33. Boussion N, Cheze Le Rest C, Hatt M, Visvikis D. Incorporation of wavelet-based denoising in iterative deconvolution for partial volume correction in whole-body PET imaging. Eur J Nucl Med Mol Imaging. 2009;36:1064–75.

    Article  PubMed  CAS  Google Scholar 

  34. DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 1988;44:837–45.

    Article  PubMed  CAS  Google Scholar 

Download references

Conflicts of interest

None.

Financial support

French Research Ministry PhD grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathieu Hatt.

Additional information

Mathieu Hatt and Florent Tixier contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hatt, M., Tixier, F., Cheze Le Rest, C. et al. Robustness of intratumour 18F-FDG PET uptake heterogeneity quantification for therapy response prediction in oesophageal carcinoma. Eur J Nucl Med Mol Imaging 40, 1662–1671 (2013). https://doi.org/10.1007/s00259-013-2486-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-013-2486-8

Keywords

Navigation