Skip to main content
Log in

Pharmacokinetic analysis of [18F]FAZA in non-small cell lung cancer patients

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

[18F]Fluoroazomycin arabinoside (FAZA) is a positron emission tomography (PET) tracer developed to enable identification of hypoxic regions within a tumour. The aims of this study were to determine the optimal kinetic model along with validation of using alternatives to arterial blood sampling for analysing [18F]FAZA studies and to assess the validity of simplified analytical methods.

Methods

Dynamic 70-min [18F]FAZA PET/CT scans were obtained from nine non-small cell lung cancer patients. Continuous arterial blood sampling, together with manual arterial and venous sampling, was performed to derive metabolite-corrected plasma input functions. Volumes of interest (VOIs) were defined for tumour, healthy lung muscle and adipose tissue generating [18F]FAZA time-activity curves (TACs). TACs were analysed using one- and two-tissue compartment models using both metabolite-corrected blood sampler plasma input functions (BSIF) and image-derived plasma input functions (IDIF).

Results

The reversible two-tissue compartment model with blood volume parameter (2T4k+VB) best described kinetics of [18F]FAZA in tumours. Volumes of distribution (VT) obtained using IDIF correlated well with those derived using BSIF (R 2 = 0.82). Venous samples yielded the same radioactivity concentrations as arterial samples for times >50 min post-injection (p.i.). In addition, both plasma to whole blood ratios and parent fractions were essentially the same for venous and arterial samples. Both standardised uptake value (SUV), normalised to lean body mass, and tumour to blood ratio correlated well with VT (R 2 = 0.77 and R 2 = 0.87, respectively, at 50–60 min p.i.), although a bias was observed at low VT.

Conclusion

The 2T4k+VB model provided the best fit to the dynamic [18F]FAZA data. IDIF with venous blood samples can be used as input function. Further data are needed to validate the use of simplified methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Vaupel P, Mayer A. Hypoxia in cancer: significance and impact on clinical outcome. Cancer Metastasis Rev 2007;26(2):225–39.

    Article  PubMed  CAS  Google Scholar 

  2. Eschmann SM, Paulsen F, Reimold M, Dittmann H, Welz S, Reischl G, et al. Prognostic impact of hypoxia imaging with 18F-misonidazole PET in non-small cell lung cancer and head and neck cancer before radiotherapy. J Nucl Med 2005;46(2):253–60.

    PubMed  Google Scholar 

  3. Rischin D, Hicks RJ, Fisher R, Binns D, Corry J, Porceddu S, et al. Prognostic significance of [18F]-misonidazole positron emission tomography-detected tumor hypoxia in patients with advanced head and neck cancer randomly assigned to chemoradiation with or without tirapazamine: a substudy of Trans-Tasman Radiation Oncology Group Study 98.02. J Clin Oncol 2006;24(13):2098–104.

    Article  PubMed  Google Scholar 

  4. Beck R, Röper B, Carlsen JM, Huisman MC, Lebschi JA, Andratschke N, et al. Pretreatment 18F-FAZA PET predicts success of hypoxia-directed radiochemotherapy using tirapazamine. J Nucl Med 2007;48(6):973–80.

    Article  PubMed  CAS  Google Scholar 

  5. Grosu AL, Souvatzoglou M, Röper B, Dobritz M, Wiedenmann N, Jacob V, et al. Hypoxia imaging with FAZA-PET and theoretical considerations with regard to dose painting for individualization of radiotherapy in patients with head and neck cancer. Int J Radiat Oncol Biol Phys 2007;69(2):541–51.

    Article  PubMed  CAS  Google Scholar 

  6. Busk M, Horsman MR, Jakobsen S, Hansen KV, Bussink J, van der Kogel A, et al. Can hypoxia-PET map hypoxic cell density heterogeneity accurately in an animal tumor model at a clinically obtainable image contrast? Radiother Oncol 2009;92(3):429–36.

    Article  PubMed  CAS  Google Scholar 

  7. Arabi M, Piert M. Hypoxia PET/CT imaging: implications for radiation oncology. Q J Nucl Med Mol Imaging 2010;54(5):500–9.

    PubMed  CAS  Google Scholar 

  8. Krohn KA, Link JM, Mason RP. Molecular imaging of hypoxia. J Nucl Med 2008;49 Suppl 2:129S–48.

    Article  PubMed  CAS  Google Scholar 

  9. Lee ST, Scott AM. Hypoxia positron emission tomography imaging with 18F-fluoromisonidazole. Semin Nucl Med 2007;37(6):451–61.

    Article  PubMed  Google Scholar 

  10. Nunn A, Linder K, Strauss HW. Nitroimidazoles and imaging hypoxia. Eur J Nucl Med 1995;22(3):265–80.

    Article  PubMed  CAS  Google Scholar 

  11. Sorger D, Patt M, Kumar P, Wiebe LI, Barthel H, Seese A, et al. [18F]Fluoroazomycinarabinofuranoside (18FAZA) and [18F]fluoromisonidazole (18FMISO): a comparative study of their selective uptake in hypoxic cells and PET imaging in experimental rat tumors. Nucl Med Biol 2003;30(3):317–26.

    Article  PubMed  CAS  Google Scholar 

  12. Reischl G, Dorow DS, Cullinane C, Katsifis A, Roselt P, Binns D, et al. Imaging of tumor hypoxia with [124I]IAZA in comparison with [18F]FMISO and [18F]FAZA–first small animal PET results. J Pharm Pharm Sci 2007;10(2):203–11.

    PubMed  CAS  Google Scholar 

  13. Garcia-Parra R, Wood D, Shah RB, Siddiqui J, Hussain H, Park H, et al. Investigation on tumor hypoxia in resectable primary prostate cancer as demonstrated by 18F-FAZA PET/CT utilizing multimodality fusion techniques. Eur J Nucl Med Mol Imaging 2011;38(10):1816–23.

    Article  PubMed  Google Scholar 

  14. Souvatzoglou M, Grosu AL, Röper B, Krause BJ, Reischl G, Picchio M, et al. Tumour hypoxia imaging with [18F]FAZA PET in head and neck cancer patients: a pilot study. Eur J Nucl Med Mol Imaging 2007;34(10):1566–75.

    Article  PubMed  CAS  Google Scholar 

  15. Schuetz M, Schmid MP, Pötter R, Kommata S, Georg D, Lukic D, et al. Evaluating repetitive 18F-fluoroazomycin-arabinoside (18FAZA) PET in the setting of MRI guided adaptive radiotherapy in cervical cancer. Acta Oncol 2010;49(7):941–7.

    Article  PubMed  CAS  Google Scholar 

  16. Busk M, Munk OL, Jakobsen S, Wang T, Skals M, Steiniche T, et al. Assessing hypoxia in animal tumor models based on pharmacokinetic analysis of dynamic FAZA PET. Acta Oncol 2010;49(7):922–33.

    Article  PubMed  CAS  Google Scholar 

  17. Shi K, Souvatzoglou M, Astner ST, Vaupel P, Nüsslin F, Wilkens JJ, et al. Quantitative assessment of hypoxia kinetic models by a cross-study of dynamic 18F-FAZA and 15O-H2O in patients with head and neck tumors. J Nucl Med 2010;51(9):1386–94.

    Article  PubMed  CAS  Google Scholar 

  18. Reischl G, Ehrlichmann W, Bieg C, Solbach C, Kumar P, Wiebe LI, et al. Preparation of the hypoxia imaging PET tracer [18F]FAZA: reaction parameters and automation. Appl Radiat Isot 2005;62(6):897–901.

    Article  PubMed  CAS  Google Scholar 

  19. Windhorst AD, Linden TT, de Nooij A, Keus JF, Buijs FL, Schollema PE, et al. A complete, multipurpose, low cost, fully automated and GMP compliant radiosynthesis system. J Labelled Comp Radiopharm 2001;44(Suppl S1):S1052–4.

    Article  Google Scholar 

  20. Boellaard R. Standards for PET image acquisition and quantitative data analysis. J Nucl Med 2009;50 Suppl 1:11S–20.

    Article  PubMed  CAS  Google Scholar 

  21. Boellaard R, O’Doherty MJ, Weber WA, Mottaghy FM, Lonsdale MN, Stroobants SG, et al. FDG PET and PET/CT: EANM procedure guidelines for tumour PET imaging: version 1.0. Eur J Nucl Med Mol Imaging 2010;37(1):181–200.

    Article  PubMed  Google Scholar 

  22. Boellaard R, van Lingen A, van Balen SC, Hoving BG, Lammertsma AA. Characteristics of a new fully programmable blood sampling device for monitoring blood radioactivity during PET. Eur J Nucl Med 2001;28(1):81–9.

    Article  PubMed  CAS  Google Scholar 

  23. Gunn RN, Gunn SR, Cunningham VJ. Positron emission tomography compartmental models. J Cereb Blood Flow Metab 2001;21(6):635–52.

    Article  PubMed  CAS  Google Scholar 

  24. Yaqub M, Boellaard R, Kropholler MA, Lammertsma AA. Optimization algorithms and weighting factors for analysis of dynamic PET studies. Phys Med Biol 2006;51(17):4217–32.

    Article  PubMed  Google Scholar 

  25. Lammertsma AA, Bench CJ, Hume SP, Osman S, Gunn K, Brooks DJ, et al. Comparison of methods for analysis of clinical [11C]raclopride studies. J Cereb Blood Flow Metab 1996;16(1):42–52.

    Article  PubMed  CAS  Google Scholar 

  26. Akaike H. A new look at the statistical model identification. IEEE Trans Autom Control 1974;AC-19:716–23.

    Article  Google Scholar 

  27. Glatting G, Kletting P, Reske SN, Hohl K, Ring C. Choosing the optimal fit function: comparison of the Akaike information criterion and the F-test. Med Phys 2007;34(11):4285–92.

    Article  PubMed  CAS  Google Scholar 

  28. Sugawara Y, Zasadny KR, Neuhoff AW, Wahl RL. Reevaluation of the standardized uptake value for FDG: variations with body weight and methods for correction. Radiology 1999;213(2):521–5.

    PubMed  CAS  Google Scholar 

  29. Chan T. Computerized method for automatic evaluation of lean body mass from PET/CT: comparison with predictive equations. J Nucl Med 2012;53(1):130–7.

    Article  PubMed  Google Scholar 

  30. Busk M, Horsman MR, Jakobsen S, Bussink J, van der Kogel A, Overgaard J. Cellular uptake of PET tracers of glucose metabolism and hypoxia and their linkage. Eur J Nucl Med Mol Imaging 2008;35(12):2294–303.

    Article  PubMed  CAS  Google Scholar 

  31. Maier FC, Kneilling M, Reischl G, Cay F, Bukala D, Schmid A, et al. Significant impact of different oxygen breathing conditions on noninvasive in vivo tumor-hypoxia imaging using [18F]-fluoro-azomycinarabino-furanoside ([18F]FAZA). Radiat Oncol 2011;6(1):165.

    Article  PubMed  CAS  Google Scholar 

  32. Piert M, Machulla HJ, Picchio M, Reischl G, Ziegler S, Kumar P, et al. Hypoxia-specific tumor imaging with 18F-fluoroazomycin arabinoside. J Nucl Med 2005;46(1):106–13.

    PubMed  Google Scholar 

  33. Cheebsumon P, Yaqub M, van Velden FH, Hoekstra OS, Lammertsma AA, Boellaard R. Impact of [(18)F]FDG PET imaging parameters on automatic tumour delineation: need for improved tumour delineation methodology. Eur J Nucl Med Mol Imaging 2011;38(12):2136–44.

    Article  PubMed  Google Scholar 

  34. Koh WJ, Rasey JS, Evans ML, Grierson JR, Lewellen TK, Graham MM, et al. Imaging of hypoxia in human tumors with [F-18]fluoromisonidazole. Int J Radiat Oncol Biol Phys 1992;22(1):199–212.

    Article  PubMed  CAS  Google Scholar 

  35. Rasey JS, Koh WJ, Evans ML, Peterson LM, Lewellen TK, Graham MM, et al. Quantifying regional hypoxia in human tumors with positron emission tomography of [18F]fluoromisonidazole: a pretherapy study of 37 patients. Int J Radiat Oncol Biol Phys 1996;36(2):417–28.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank members of the Department of Radiology & Nuclear Medicine for tracer production and data acquisition. This study was performed within the framework of the Center for Translational Molecular Medicine (CTMM), which provided financial support (AIRFORCE project, grant 03O-103).

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eline E. Verwer.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Resource 1

(PDF 66.9 kb)

Online Resource 2

(PDF 8.30 kb)

Online Resource 3

(PDF 18.4 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verwer, E.E., van Velden, F.H.P., Bahce, I. et al. Pharmacokinetic analysis of [18F]FAZA in non-small cell lung cancer patients. Eur J Nucl Med Mol Imaging 40, 1523–1531 (2013). https://doi.org/10.1007/s00259-013-2462-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-013-2462-3

Keywords

Navigation