Skip to main content

Advertisement

Log in

Tumour volume delineation in prostate cancer assessed by [11C]choline PET/CT: validation with surgical specimens

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

PET has been proven to be helpful in the delineation of gross tumour volume (GTV) for external radiation therapy in several tumour entities. The aim of this study was to determine if [11C]choline PET could be used to localize the carcinomatous tissue within the prostate in order to specifically target this area for example with high-precision radiation therapy.

Methods

Included in this prospective study were 20 patients with histological proven prostate carcinoma who underwent [11C]choline PET/CT before radical prostatectomy. After surgical resection, specimens were fixed and cut into 5-mm step sections. In each section the area of the carcinoma was delineated manually by an experienced pathologist and digitalized, and the histopathological tumour volume was calculated. Shrinkage due to resection and fixation was corrected using in-vivo and ex-vivo CT data of the prostate. Histopathological tumour location and size were compared with the choline PET data. Different segmentation algorithms were applied to the PET data to segment the intraprostatic lesion volume.

Results

A total of 28 carcinomatous lesions were identified on histopathology. Only 13 (46 %) of these lesions had corresponding focal choline uptake. In the remaining lesions, no PET uptake (2 lesions) or diffuse uptake not corresponding to the area of the carcinoma (13 lesions) was found. In the patients with corresponding PET lesions, no suitable SUV threshold (neither absolute nor relative) was found for GTV segmentation to fit the volume to the histological tumour volume.

Conclusion

The choline uptake pattern corresponded to the histological localization of prostate cancer in fewer than 50 % of lesions. Even when corresponding visual choline uptake was found, this uptake was highly variable between patients. Therefore SUV thresholding with standard algorithms did not lead to satisfying results with respect to defining tumour tissue in the prostate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Damber JE, Aus G. Prostate cancer. Lancet. 2008;371:1710–21.

    Article  PubMed  Google Scholar 

  2. Pasquier D, Ballereau C. Adjuvant and salvage radiotherapy after prostatectomy for prostate cancer: a literature review. Int J Radiat Oncol Biol Phys. 2008;72:972–9.

    Article  PubMed  Google Scholar 

  3. Zelefsky MJ, Pei X, Chou JF, Schechter M, Kollmeier M, Cox B, et al. Dose escalation for prostate cancer radiotherapy: predictors of long-term biochemical tumor control and distant metastases-free survival outcomes. Eur Urol. 2011;60:1133–9.

    Article  PubMed  Google Scholar 

  4. Ashamalla H, Rafla S, Parikh K, Mokhtar B, Goswami G, Kambam S, et al. The contribution of integrated PET/CT to the evolving definition of treatment volumes in radiation treatment planning in lung cancer. Int J Radiat Oncol Biol Phys. 2005;63:1016–23.

    Article  PubMed  Google Scholar 

  5. van Baardwijk A, Baumert BG, Bosmans G, van Kroonenburgh M, Stroobants S, Gregoire V, et al. The current status of FDG-PET in tumour volume definition in radiotherapy treatment planning. Cancer Treat Rev. 2006;32:245–60.

    Article  PubMed  Google Scholar 

  6. Astner ST, Theodorou M, Dobrei-Ciuchendea M, Auer F, Kopp C, Molls M, et al. Tumor shrinkage assessed by volumetric MRI in the long-term follow-up after stereotactic radiotherapy of meningiomas. Strahlenther Onkol. 2010;186:423–9.

    Article  PubMed  Google Scholar 

  7. Bundschuh RA, Andratschke N, Dinges J, Duma MN, Astner ST, Brügel M, et al. Respiratory gated [(18)F]FDG PET/CT for target volume delineation in stereotactic radiation treatment of liver metastases. Strahlenther Onkol. 2012;188:592–8.

    Article  PubMed  CAS  Google Scholar 

  8. Astner ST, Dobrei-Ciuchendea M, Essler M, Bundschuh RA, Sai H, Schwaiger M, et al. Effect of 11C-methionine-positron emission tomography on gross tumor volume delineation in stereotactic radiotherapy of skull base meningiomas. Int J Radiat Oncol Biol Phys. 2008;72:1161–7.

    Article  PubMed  Google Scholar 

  9. Pinkawa M, Piroth MD, Holy R, Klotz J, Djukic V, Corral NE, et al. Dose-escalation using intensity-modulated radiotherapy for prostate cancer – evaluation of quality of life with and without (18)F-choline PET-CT detected simultaneous integrated boost. Radiat Oncol. 2012;7:14.

    Article  PubMed  CAS  Google Scholar 

  10. Kotzerke J, Prang J, Neumaier B, Volkmer B, Guhlmann A, Kleinschmidt K, et al. Experience with carbon-11 choline positron emission tomography in prostate carcinoma. Eur J Nucl Med. 2000;27:1415–9.

    Article  PubMed  CAS  Google Scholar 

  11. Schmid DT, John H, Zweifel R, Cservenyak T, Westera G, Goerres GW, et al. Fluorocholine PET/CT in patients with prostate cancer: initial experience. Radiology. 2005;235:623–8.

    Article  PubMed  Google Scholar 

  12. Krause BJ, Souvatzoglou M, Treiber U. Imaging of prostate cancer with PET/CT and radioactively labeled choline derivates. Urol Oncol. 2011. doi:10.1016/j.urolonc.2010.08.008

  13. Piert M, Park H, Khan A, Siddiqui J, Hussain H, Chenevert T, et al. Detection of aggressive primary prostate cancer with 11C-choline PET/CT using multimodality fusion techniques. J Nucl Med. 2009;50:1585–93.

    Article  PubMed  CAS  Google Scholar 

  14. Yamaguchi T, Lee J, Uemura H, Sasaki T, Takahashi N, Oka T, et al. Prostate cancer: a comparative study of 11C-choline PET and MR imaging combined with proton MR spectroscopy. Eur J Nucl Med Mol Imaging. 2005;32:742–8.

    Article  PubMed  CAS  Google Scholar 

  15. Reske SN, Blumstein NM, Neumaier B, Gottfried HW, Finsterbusch F, Kocot D, et al. Imaging prostate cancer with 11C-choline PET/CT. J Nucl Med. 2006;47:1249–54.

    PubMed  CAS  Google Scholar 

  16. Souvatzoglou M, Weirich G, Schwarzenboeck S, Maurer T, Schuster T, Bundschuh RA, et al. The sensitivity of [11C]choline PET/CT to localize prostate cancer depends on the tumor configuration. Clin Cancer Res. 2011;17:3751–9.

    Article  PubMed  Google Scholar 

  17. Farsad M, Schiavina R, Castellucci P, Nanni C, Corti B, Martorana G, et al. Detection and localization of prostate cancer: correlation of (11)C-choline PET/CT with histopathologic step-section analysis. J Nucl Med. 2005;46:1642–9.

    PubMed  CAS  Google Scholar 

  18. Astner ST, Bundschuh RA, Beer AJ, Ziegler SI, Krause BJ, Schwaiger M, et al. Assessment of tumor volumes in skull base glomus tumors using Gluc-Lys[(18)F]-TOCA positron emission tomography. Int J Radiat Oncol Biol Phys. 2009;73:1135–40.

    Article  PubMed  Google Scholar 

  19. Daisne JF, Duprez T, Weynand B, Lonneux M, Hamoir M, Reychler H, et al. Tumor volume in pharyngolaryngeal squamous cell carcinoma: comparison at CT, MR imaging, and FDG PET and validation with surgical specimen. Radiology. 2004;233:93–100.

    Article  PubMed  Google Scholar 

  20. Martinez MJ, Bercier Y, Schwaiger M, Ziegler SI. PET/CT Biograph Sensation 16: performance improvement using faster electronics. Nuklearmedizin. 2006;3:126–33.

    Google Scholar 

  21. Schned AR, Wheeler KJ, Hodorowski CA, Heaney JA, Ernstoff MS, Amdur RJ, et al. Tissue-shrinkage correction factor in the calculation of prostate cancer volume. Am J Surg Pathol. 1996;20:1501–6.

    Article  PubMed  CAS  Google Scholar 

  22. Kwee SA, Coel MN, Lim J, Ko JP. Prostate cancer localization with 18fluorine fluorocholine positron emission tomography. J Urol. 2005;173:252–5.

    Article  PubMed  Google Scholar 

  23. Beheshti M, Imamovic L, Broinger G, Vali R, Waldenberger P, Stoiber F, et al. 18F choline PET/CT in the preoperative staging of prostate cancer in patients with intermediate or high risk of extracapsular disease: a prospective study of 130 patients. Radiology. 2010;254:925–33.

    Article  PubMed  Google Scholar 

  24. de Jong IJ, Pruim J, Elsinga PH, Vaalburg W, Mensink HJ. Visualization of prostate cancer with 11C-choline positron emission tomography. Eur Urol. 2002;42:18–23.

    Article  PubMed  Google Scholar 

  25. de Jong IJ, Pruim J, Elsinga PH, Vaalburg W, Mensink HJ. 11C-choline positron emission tomography for the evaluation after treatment of localized prostate cancer. Eur Urol. 2003;44:32–8. discussion 38–39.

    Article  PubMed  Google Scholar 

  26. Giovacchini G, Picchio M, Coradeschi E, Scattoni V, Bettinardi V, Cozzarini C, et al. [(11)C]choline uptake with PET/CT for the initial diagnosis of prostate cancer: relation to PSA levels, tumour stage and anti-androgenic therapy. Eur J Nucl Med Mol Imaging. 2008;35:1065–73.

    Article  PubMed  CAS  Google Scholar 

  27. Husarik DB, Miralbell R, Dubs M, John H, Giger OT, Gelet A, et al. Evaluation of [(18)F]-choline PET/CT for staging and restaging of prostate cancer. Eur J Nucl Med Mol Imaging. 2008;35:253–63.

    Article  PubMed  Google Scholar 

  28. Kwee SA, Wei H, Sesterhenn I, Yun D, Coel MN. Localization of primary prostate cancer with dual-phase 18F-fluorocholine PET. J Nucl Med. 2006;47:262–9.

    PubMed  Google Scholar 

  29. Martorana G, Schiavina R, Corti B, Farsad M, Salizzoni E, Brunocilla E, et al. 11C-choline positron emission tomography/computerized tomography for tumor localization of primary prostate cancer in comparison with 12-core biopsy. J Urol. 2006;176:954–60. discussion 960.

    Article  PubMed  CAS  Google Scholar 

  30. Scher B, Seitz M, Albinger W, Tiling R, Scherr M, Becker HC, et al. Value of 11C-choline PET and PET/CT in patients with suspected prostate cancer. Eur J Nucl Med Mol Imaging. 2007;34:45–53.

    Article  PubMed  Google Scholar 

  31. Schiavina R, Scattoni V, Castellucci P, Picchio M, Corti B, Briganti A, et al. 11C-choline positron emission tomography/computerized tomography for preoperative lymph-node staging in intermediate-risk and high-risk prostate cancer: comparison with clinical staging nomograms. Eur Urol. 2008;54:392–401.

    Article  PubMed  Google Scholar 

  32. Steuber T, Schlomm T, Heinzer H, Zacharias M, Ahyai S, Chun KF, et al. [F(18)]-fluoroethylcholine combined in-line PET-CT scan for detection of lymph-node metastasis in high risk prostate cancer patients prior to radical prostatectomy: Preliminary results from a prospective histology-based study. Eur J Cancer. 2010;46:449–55.

    Article  PubMed  CAS  Google Scholar 

  33. Sutinen E, Nurmi M, Roivainen A, Varpula M, Tolvanen T, Lehikoinen P, et al. Kinetics of [(11)C]choline uptake in prostate cancer: a PET study. Eur J Nucl Med Mol Imaging. 2004;31:317–24.

    Article  PubMed  CAS  Google Scholar 

  34. Watanabe H, Kanematsu M, Kondo H, Kako N, Yamamoto N, Yamada T, et al. Preoperative detection of prostate cancer: a comparison with 11C-choline PET, 18F-fluorodeoxyglucose PET and MR imaging. J Magn Reson Imaging. 2010;31:1151–6.

    Article  PubMed  Google Scholar 

  35. Yoshida S, Nakagomi K, Goto S, Futatsubashi M, Torizuka T. 11C-choline positron emission tomography in prostate cancer: primary staging and recurrent site staging. Urol Int. 2005;74:214–20.

    Article  PubMed  CAS  Google Scholar 

  36. Li X, Liu Q, Wang M, Jin X, Liu Q, Yao S, et al. C-11 choline PET/CT imaging for differentiating malignant from benign prostate lesions. Clin Nucl Med. 2008;33:671–6.

    Article  PubMed  CAS  Google Scholar 

  37. Bradley JD, Perez CA, Dehdashti F, Siegel BA. Implementing biologic target volumes in radiation treatment planning for non-small-cell lung cancer. J Nucl Med. 2004;45:96S–101.

    PubMed  Google Scholar 

  38. Ciernik IF, Huser M, Burger C, Davis JB, Szekely G. Automated functional image-guided radiation treatment planning for rectal cancer. Int J Radiat Oncol Biol Phys. 2005;62:893–900.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge the excellent technical assistance of Brigitte Dzewas, Helga Fernolendt, Coletta Kruschke and Anna Winter of the PET/CT staff.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralph A. Bundschuh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bundschuh, R.A., Wendl, C.M., Weirich, G. et al. Tumour volume delineation in prostate cancer assessed by [11C]choline PET/CT: validation with surgical specimens. Eur J Nucl Med Mol Imaging 40, 824–831 (2013). https://doi.org/10.1007/s00259-013-2345-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-013-2345-7

Keywords

Navigation