Skip to main content
Log in

When should we recommend use of dual time-point and delayed time-point imaging techniques in FDG PET?

  • Review Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

FDG PET and PET/CT are now widely used in oncological imaging for tumor characterization, staging, restaging, and response evaluation. However, numerous benign etiologies may cause increased FDG uptake indistinguishable from that of malignancy. Multiple studies have shown that dual time-point imaging (DTPI) of FDG PET may be helpful in differentiating malignancy from benign processes. However, exceptions exist, and some studies have demonstrated significant overlap of FDG uptake patterns between benign and malignant lesions on delayed time-point images. In this review, we summarize our experience and opinions on the value of DTPI and delayed time-point imaging in oncology, with a review of the relevant literature. We believe that the major value of DTPI and delayed time-point imaging is the increased sensitivity due to continued clearance of background activity and continued FDG accumulation in malignant lesions, if the same diagnostic criteria (as in the initial standard single time-point imaging) are used. The specificity of DTPI and delayed time-point imaging depends on multiple factors, including the prevalence of malignancies, the patient population, and the cut-off values (either SUV or retention index) used to define a malignancy. Thus, DTPI and delayed time-point imaging would be more useful if performed for evaluation of lesions in regions with significant background activity clearance over time (such as the liver, the spleen, the mediastinum), and if used in the evaluation of the extent of tumor involvement rather than in the characterization of the nature of any specific lesion. Acute infectious and non-infectious inflammatory lesions remain as the major culprit for diminished diagnostic performance of these approaches (especially in tuberculosis-endemic regions). Tumor heterogeneity may also contribute to inconsistent performance of DTPI. The authors believe that selective use of DTPI and delayed time-point imaging will improve diagnostic accuracy and interpretation confidence in FDG PET imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Cheng G, Alavi A, Zhuang H. Clinical application of FDG PET/CT in pediatric lymphoma patients. PET Clin. 2012;7:47–56.

    Article  Google Scholar 

  2. Hustinx R, Smith RJ, Benard F, Rosenthal DI, Machtay M, Farber LA, et al. Dual time point fluorine-18 fluorodeoxyglucose positron emission tomography: a potential method to differentiate malignancy from inflammation and normal tissue in the head and neck. Eur J Nucl Med. 1999;26:1345–8.

    Article  PubMed  CAS  Google Scholar 

  3. Zhuang H, Pourdehnad M, Lambright ES, Yamamoto AJ, Lanuti M, Li P, et al. Dual time point 18F-FDG PET imaging for differentiating malignant from inflammatory processes. J Nucl Med. 2001;42:1412–7.

    PubMed  CAS  Google Scholar 

  4. Kumar R, Loving VA, Chauhan A, Zhuang H, Mitchell S, Alavi A. Potential of dual-time-point imaging to improve breast cancer diagnosis with (18)F-FDG PET. J Nucl Med. 2005;46:1819–24.

    PubMed  Google Scholar 

  5. Mavi A, Urhan M, Yu JQ, Zhuang H, Houseni M, Cermik TF, et al. Dual time point 18F-FDG PET imaging detects breast cancer with high sensitivity and correlates well with histologic subtypes. J Nucl Med. 2006;47:1440–6.

    PubMed  Google Scholar 

  6. Xiu Y, Bhutani C, Dhurairaj T, Yu JQ, Dadparvar S, Reddy S, et al. Dual-time point FDG PET imaging in the evaluation of pulmonary nodules with minimally increased metabolic activity. Clin Nucl Med. 2007;32:101–5.

    Article  PubMed  Google Scholar 

  7. Alkhawaldeh K, Bural G, Kumar R, Alavi A. Impact of dual-time-point (18)F-FDG PET imaging and partial volume correction in the assessment of solitary pulmonary nodules. Eur J Nucl Med Mol Imaging. 2008;35:246–52.

    Article  PubMed  Google Scholar 

  8. Schillaci O, Travascio L, Bolacchi F, Calabria F, Bruni C, Ciccio C, et al. Accuracy of early and delayed FDG PET-CT and of contrast-enhanced CT in the evaluation of lung nodules: a preliminary study on 30 patients. Radiol Med. 2009;114:890–906.

    Article  PubMed  CAS  Google Scholar 

  9. Lee JW, Kim SK, Lee SM, Moon SH, Kim TS. Detection of hepatic metastases using dual-time-point FDG PET/CT scans in patients with colorectal cancer. Mol Imaging Biol. 2011;13:565–72.

    Article  PubMed  Google Scholar 

  10. Shinya T, Fujii S, Asakura S, Taniguchi T, Yoshio K, Alafate A, et al. Dual-time-point F-18 FDG PET/CT for evaluation in patients with malignant lymphoma. Ann Nucl Med. 2012;26:616–21.

    Article  PubMed  Google Scholar 

  11. Gallagher BM, Ansari A, Atkins H, Casella V, Christman DR, Fowler JS, et al. Radiopharmaceuticals XXVII. 18F-labeled 2-deoxy-2-fluoro-d-glucose as a radiopharmaceutical for measuring regional myocardial glucose metabolism in vivo: tissue distribution and imaging studies in animals. J Nucl Med. 1977;18:990–6.

    PubMed  CAS  Google Scholar 

  12. Chang CC, Cho SF, Chen YW, Tu HP, Lin CY, Chang CS. SUV on dual-phase FDG PET/CT correlates with the Ki-67 proliferation index in patients with newly diagnosed non-Hodgkin lymphoma. Clin Nucl Med. 2012;37:e189–95.

    Article  PubMed  Google Scholar 

  13. Higashi T, Saga T, Nakamoto Y, Ishimori T, Mamede MH, Wada M, et al. Relationship between retention index in dual-phase (18)F-FDG PET, and hexokinase-II and glucose transporter-1 expression in pancreatic cancer. J Nucl Med. 2002;43:173–80.

    PubMed  CAS  Google Scholar 

  14. Chen CJ, Lee BF, Yao WJ, Cheng L, Wu PS, Chu CL, et al. Dual-phase 18F-FDG PET in the diagnosis of pulmonary nodules with an initial standard uptake value less than 2.5. AJR Am J Roentgenol. 2008;191:475–9.

    Article  PubMed  Google Scholar 

  15. Yen R-F, Chen K-C, Lee J-M, Chang Y-C, Wang J, Cheng M-F, et al. 18F-FDG PET for the lymph node staging of non-small cell lung cancer in a tuberculosis-endemic country: is dual time point imaging worth the effort? Eur J Nucl Med Mol Imaging. 2008;35:1305–15.

    Article  PubMed  Google Scholar 

  16. Laffon E, de Clermont H, Begueret H, Vernejoux J-M, Thumerel M, Marthan R, et al. Assessment of dual-time-point 18F-FDG-PET imaging for pulmonary lesions. Nucl Med Commun. 2009;30:455–61.

    Article  PubMed  Google Scholar 

  17. Sathekge MM, Maes A, Pottel H, Stoltz A, van de Wiele C. Dual time-point FDG PET-CT for differentiating benign from malignant solitary pulmonary nodules in a TB endemic area. S Afr Med J. 2010;100:598–601.

    PubMed  Google Scholar 

  18. Kim DW, Kim CG. Dual-time point positron emission tomography findings of benign mediastinal lymph nodes in a tuberculosis-endemic region. Jpn J Radiol. 2011;29:682–7.

    Article  PubMed  Google Scholar 

  19. Umeda Y, Demura Y, Morikawa M, Ameshima S, Tsuchida T, Fujibayashi Y, et al. Prognostic value of dual-time-point 18F-fluorodeoxyglucose positron emission tomography in patients with pulmonary sarcoidosis. Respirology. 2011;16:713–20.

    Article  PubMed  Google Scholar 

  20. Li M, Wu N, Liu Y, Zheng R, Liang Y, Zhang W, et al. Regional nodal staging with 18F-FDG PET-CT in non-small cell lung cancer: additional diagnostic value of CT attenuation and dual-time-point imaging. Eur J Radiol. 2012;81:1886–90.

    Article  PubMed  Google Scholar 

  21. Zheng Z, Pan Y, Guo F, Wei H, Wu S, Pan T, et al. Multimodality FDG PET/CT appearance of pulmonary tuberculoma mimicking lung cancer and pathologic correlation in a tuberculosis-endemic country. South Med J. 2011;104:440–5.

    Article  PubMed  Google Scholar 

  22. Delbeke D, Coleman RE, Guiberteau MJ, Brown ML, Royal HD, Siegel BA, et al. Procedure guideline for tumor imaging with 18F-FDG PET/CT 1.0. J Nucl Med. 2006;47:885–95.

    PubMed  Google Scholar 

  23. Dirisamer A, Halpern BS, Schima W, Heinisch M, Wolf F, Beheshti M, et al. Dual-time-point FDG-PET/CT for the detection of hepatic metastases. Mol Imaging Biol. 2008;10:335–40.

    Article  PubMed  Google Scholar 

  24. Alkhawaldeh K, Biersack HJ, Henke A, Ezziddin S. Impact of dual-time-point F-18 FDG PET/CT in the assessment of pleural effusion in patients with non-small-cell lung cancer. Clin Nucl Med. 2011;36:423–8.

    Article  PubMed  Google Scholar 

  25. Hahn S, Hecktor J, Grabellus F, Hartung V, Poppel T, Kimmig R, et al. Diagnostic accuracy of dual-time-point 18F-FDG PET/CT for the detection of axillary lymph node metastases in breast cancer patients. Acta Radiol. 2012;53:518–23.

    Article  PubMed  Google Scholar 

  26. Ma SY, See LC, Lai CH, Chou HH, Tsai CS, Ng KK, et al. Delayed (18)F-FDG PET for detection of paraaortic lymph node metastases in cervical cancer patients. J Nucl Med. 2003;44:1775–83.

    PubMed  Google Scholar 

  27. Demura Y, Tsuchida T, Ishizaki T, Mizuno S, Totani Y, Ameshima S, et al. 18F-FDG accumulation with PET for differentiation between benign and malignant lesions in the thorax. J Nucl Med. 2003;44:540–8.

    PubMed  CAS  Google Scholar 

  28. Yen TC, Chang YC, Chan SC, Chang JT, Hsu CH, Lin KJ, et al. Are dual-phase 18F-FDG PET scans necessary in nasopharyngeal carcinoma to assess the primary tumour and loco-regional nodes? Eur J Nucl Med Mol Imaging. 2005;32:541–8.

    Article  PubMed  Google Scholar 

  29. Matthies A, Hickeson M, Cuchiara A, Alavi A. Dual time point 18F-FDG PET for the evaluation of pulmonary nodules. J Nucl Med. 2002;43:871–5.

    PubMed  Google Scholar 

  30. Lan XL, Zhang YX, Wu ZJ, Jia Q, Wei H, Gao ZR. The value of dual time point (18)F-FDG PET imaging for the differentiation between malignant and benign lesions. Clin Radiol. 2008;63:756–64.

    Article  PubMed  Google Scholar 

  31. Nishiyama Y, Yamamoto Y, Kimura N, Ishikawa S, Sasakawa Y, Ohkawa M. Dual-time-point FDG-PET for evaluation of lymph node metastasis in patients with non-small-cell lung cancer. Ann Nucl Med. 2008;22:245–50.

    Article  PubMed  Google Scholar 

  32. Kim SJ, Kim YK, Kim IJ, Kim YD, Lee MK. Limited predictive value of dual-time-point F-18 FDG PET/CT for evaluation of pathologic N1 status in NSCLC patients. Clin Nucl Med. 2011;36:434–9.

    Article  PubMed  Google Scholar 

  33. Hu M, Han A, Xing L, Yang W, Fu Z, Huang C, et al. Value of dual-time-point FDG PET/CT for mediastinal nodal staging in non-small-cell lung cancer patients with lung comorbidity. Clin Nucl Med. 2011;36:429–33.

    Article  PubMed  Google Scholar 

  34. Nakamura S, Okochi K, Kurabayashi T. Dual-time-point fluorodeoxyglucose positron emission tomography for diagnosis of cervical lymph node metastases in patients with head and neck squamous cell carcinoma. J Comput Assist Tomogr. 2011;35:303–7.

    Article  PubMed  Google Scholar 

  35. Cloran FJ, Banks KP, Song WS, Kim Y, Bradley YC. Limitations of dual time point PET in the assessment of lung nodules with low FDG avidity. Lung Cancer. 2010;68:66–71.

    Article  PubMed  Google Scholar 

  36. Hu Q, Wang W, Zhong X, Yuan S, Fu Z, Guo H, et al. Dual-time-point FDG PET for the evaluation of locoregional lymph nodes in thoracic esophageal squamous cell cancer. Eur J Radiol. 2009;70:320–4.

    Article  PubMed  Google Scholar 

  37. Kim SJ, Kim YK, Kim IJ, Kim YD, Lee MK. Limited prognostic value of dual time point F-18 FDG PET/CT in patients with early stage (stage I & II) non-small cell lung cancer (NSCLC). Radiother Oncol. 2011;98:105–8.

    Article  PubMed  Google Scholar 

  38. Suga K, Kawakami Y, Hiyama A, Sugi K, Okabe K, Matsumoto T, et al. Dual-time point 18F-FDG PET/CT scan for differentiation between 18F-FDG-avid non-small cell lung cancer and benign lesions. Ann Nucl Med. 2009;23:427–35.

    Article  PubMed  Google Scholar 

  39. Macdonald K, Searle J, Lyburn I. The role of dual time point FDG PET imaging in the evaluation of solitary pulmonary nodules with an initial standard uptake value less than 2.5. Clin Radiol. 2011;66:244–50.

    Article  PubMed  CAS  Google Scholar 

  40. Suga K, Kawakami Y, Hiyama A, Matsunaga N. Differentiation of FDG-avid loco-regional recurrent and compromised benign lesions after surgery for breast cancer with dual-time point F-18-fluorodeoxy-glucose PET/CT scan. Ann Nucl Med. 2009;23:399–407.

    Article  PubMed  Google Scholar 

  41. Suga K, Kawakami Y, Hiyama A, Sugi K, Okabe K, Matsumoto T, et al. Differential diagnosis between (18)F-FDG-avid metastatic lymph nodes in non-small cell lung cancer and benign nodes on dual-time point PET/CT scan. Ann Nucl Med. 2009;23:523–31.

    Article  PubMed  Google Scholar 

  42. Sanghera B, Wong WL, Lodge MA, Hain S, Stott D, Lowe J, et al. Potential novel application of dual time point SUV measurements as a predictor of survival in head and neck cancer. Nucl Med Commun. 2005;26:861–7.

    Article  PubMed  Google Scholar 

  43. Basu S, Mavi A, Cermik T, Houseni M, Alavi A. Implications of standardized uptake value measurements of the primary lesions in proven cases of breast carcinoma with different degree of disease burden at diagnosis: does 2-deoxy-2-[F-18]fluoro-D-glucose-positron emission tomography predict tumor biology? Mol Imaging Biol. 2008;10:62–6.

    Article  PubMed  Google Scholar 

  44. Tian R, Su M, Tian Y, Li F, Li L, Kuang A, et al. Dual-time point PET/CT with F-18 FDG for the differentiation of malignant and benign bone lesions. Skeletal Radiol. 2009;38:451–8.

    Article  PubMed  Google Scholar 

  45. Kim DW, Jung SA, Kim CG, Park SA. The efficacy of dual time point F-18 FDG PET imaging for grading of brain tumors. Clin Nucl Med. 2010;35:400–3.

    Article  PubMed  Google Scholar 

  46. Fuster D, Lafuente S, Setoain X, Navales I, Perissinotti A, Pavia J, et al. Dual-time point images of the liver with (18)F-FDG PET/CT in suspected recurrence from colorectal cancer. Rev Esp Med Nucl. 2012;31:111–6.

    CAS  Google Scholar 

  47. Kubota K, Yokoyama J, Yamaguchi K, Ono S, Qureshy A, Itoh M, et al. FDG-PET delayed imaging for the detection of head and neck cancer recurrence after radio-chemotherapy: comparison with MRI/CT. Eur J Nucl Med Mol Imaging. 2004;31:590–5.

    Article  PubMed  Google Scholar 

  48. Fischman AJ, Alpert NM. FDG-PET in oncology: there’s more to it than looking at pictures [editorial]. J Nucl Med. 1993;34:6–11.

    PubMed  CAS  Google Scholar 

  49. Lowe VJ, DeLong DM, Hoffman JM, Coleman RE. Optimum scanning protocol for FDG-PET evaluation of pulmonary malignancy. J Nucl Med. 1995;36:883–7.

    PubMed  CAS  Google Scholar 

  50. Kubota K, Itoh M, Ozaki K, Ono S, Tashiro M, Yamaguchi K, et al. Advantage of delayed whole-body FDG-PET imaging for tumour detection. Eur J Nucl Med. 2001;28:696–703.

    Article  PubMed  CAS  Google Scholar 

  51. Nishiyama Y, Yamamoto Y, Fukunaga K, Kimura N, Miki A, Sasakawa Y, et al. Dual-time-point 18F-FDG PET for the evaluation of gallbladder carcinoma. J Nucl Med. 2006;47:633–8.

    PubMed  Google Scholar 

  52. Arena V, Skanjeti A, Casoni R, Douroukas A, Pelosi E. Dual-phase FDG-PET: delayed acquisition improves hepatic detectability of pathological uptake. Radiol Med. 2008;113:875–86.

    Article  PubMed  CAS  Google Scholar 

  53. Cheng G, Alavi A, Lim E, Werner TJ, Del Bello CV, Akers SR. Dynamic changes of FDG uptake and clearance in normal tissues. Mol Imaging Biol. 2012. doi:10.1007/s11307-012-0600-0.

  54. Gupta N, Gill H, Graeber G, Bishop H, Hurst J, Stephens T. Dynamic positron emission tomography with F-18 fluorodeoxyglucose imaging in differentiation of benign from malignant lung/mediastinal lesions. Chest. 1998;114:1105–11.

    Article  PubMed  CAS  Google Scholar 

  55. Nishiyama Y, Yamamoto Y, Monden T, Sasakawa Y, Tsutsui K, Wakabayashi H, et al. Evaluation of delayed additional FDG PET imaging in patients with pancreatic tumour. Nucl Med Commun. 2005;26:895–901.

    Article  PubMed  Google Scholar 

  56. Chen YM, Huang G, Sun XG, Liu JJ, Chen T, Shi YP, et al. Optimizing delayed scan time for FDG PET: comparison of the early and late delayed scan. Nucl Med Commun. 2008;29:425–30.

    Article  PubMed  Google Scholar 

  57. Shinya T, Rai K, Okumura Y, Fujiwara K, Matsuo K, Yonei T, et al. Dual-time-point F-18 FDG PET/CT for evaluation of intrathoracic lymph nodes in patients with non-small cell lung cancer. Clin Nucl Med. 2009;34:216–21.

    Article  PubMed  Google Scholar 

  58. Beaulieu S, Kinahan P, Tseng J, Dunnwald LK, Schubert EK, Pham P, et al. SUV varies with time after injection in (18)F-FDG PET of breast cancer: characterization and method to adjust for time differences. J Nucl Med. 2003;44:1044–50.

    PubMed  Google Scholar 

  59. Hamberg LM, Hunter GJ, Alpert NM, Choi NC, Babich JW, Fischman AJ. The dose uptake ratio as an index of glucose metabolism: useful parameter or oversimplification? J Nucl Med. 1994;35:1308–12.

    PubMed  CAS  Google Scholar 

  60. Zytoon AA, Murakami K, El-Kholy MR, El-Shorbagy E. Dual time point FDG-PET/CT imaging… Potential tool for diagnosis of breast cancer. Clin Radiol. 2008;63:1213–27.

    Article  PubMed  CAS  Google Scholar 

  61. Kikuchi M, Nakamoto Y, Shinohara S, Fujiwara K, Tona Y, Yamazaki H, et al. Suture granuloma showing false-positive finding on PET/CT after head and neck cancer surgery. Auris Nasus Larynx. 2012;39:94–7.

    Article  PubMed  Google Scholar 

  62. Ho L, Wassef H, Seto J. FDG PET/CT imaging in granulomatous changes secondary to breast silicone injection. Clin Radiol. 2010;65:659–61.

    Article  PubMed  CAS  Google Scholar 

  63. Prosch H, Mirzaei S, Oschatz E, Strasser G, Huber M, Mostbeck G. Case report: gluteal injection site granulomas: false positive finding on FDG-PET in patients with non-small cell lung cancer. Br J Radiol. 2005;78:758–61.

    Article  PubMed  CAS  Google Scholar 

  64. Kirsch CFE, Suh JD, Lufkin RB, Canalis RF. False-positive positron-emission tomography-CT of a Teflon granuloma in the parapharyngeal space occurring after treatment for a patulous eustachian tube. AJNR Am J Neuroradiol. 2007;28:1371–2.

    Article  PubMed  CAS  Google Scholar 

  65. Morishita K, Otomo Y, Sasaki H, Yamashiro T, Okubo K. Multiple abdominal granuloma caused by spilled gallstones with imaging findings that mimic malignancy. Am J Surg. 2010;199:e23–4.

    Article  PubMed  Google Scholar 

  66. Lim ST, Jeong H-J, Kim DW, Yim C-Y, Sohn M-H. F-18 FDG PET-CT findings of intraperitoneal carbon particles-induced granulomas mimicking peritoneal carcinomatosis. Clin Nucl Med. 2008;33:321–4.

    Article  PubMed  Google Scholar 

  67. Tenconi S, Luzzi L, Paladini P, Voltolini L, Gallazzi MS, Granato F, et al. Pleural granuloma mimicking malignancy 42 years after slurry talc injection for primary spontaneous pneumothorax. Eur Surg Res. 2010;44:201–3.

    Article  PubMed  CAS  Google Scholar 

  68. Miyake KK, Nakamoto Y, Mikami Y, Ishizu K, Saga T, Higashi T, et al. F-18 FDG PET of foreign body granuloma: pathologic correlation with imaging features in 3 cases. Clin Nucl Med. 2010;35:853–7.

    Article  PubMed  Google Scholar 

  69. Cheng G, Torigian DA, Alavi A. FDG PET/CT and MRI findings in a patient with focal xanthogranulomatous pyelonephritis mimicking cystic renal malignancy. Clin Nephrol. 2011;76:484–6.

    PubMed  CAS  Google Scholar 

  70. Makino I, Yamaguchi T, Sato N, Yasui T, Kita I. Xanthogranulomatous cholecystitis mimicking gallbladder carcinoma with a false-positive result on fluorodeoxyglucose PET. World J Gastroenterol. 2009;15:3691–3.

    Article  PubMed  Google Scholar 

  71. Li Y-J, Zhang Y, Gao S, Bai R-J. Cervical and axillary lymph node sarcoidosis misdiagnosed as lymphoma on F-18 FDG PET-CT. Clin Nucl Med. 2007;32:262–4.

    Article  PubMed  Google Scholar 

  72. Cheng C-Y, Huang W-S, Shen DH, Fan Y-M, Hsu H-H, Cherng S-C, et al. FDG PET/CT demonstrated rapid progression of mediastinal lymphadenopathy in sarcoidosis. Clin Nucl Med. 2007;32:117–21.

    Article  PubMed  Google Scholar 

  73. Prabhakar HB, Rabinowitz CB, Gibbons FK, O’Donnell WJ, Shepard J-AO, Aquino SL. Imaging features of sarcoidosis on MDCT, FDG PET, and PET/CT. AJR Am J Roentgenol. 2008;190:S1–6.

    Article  PubMed  Google Scholar 

  74. Razak HR, Geso M, Abdul Rahim N, Nordin AJ. Imaging characteristics of extrapulmonary tuberculosis lesions on dual time point imaging (DTPI) of FDG PET/CT. J Med Imaging Radiat Oncol. 2011;55:556–62.

    Article  PubMed  Google Scholar 

  75. Nunez R, Kalapparambath A, Varela J. Improvement in sensitivity with delayed imaging of pulmonary lesions with FDG-PET. Rev Esp Med Nucl. 2007;26:196–207.

    Article  PubMed  CAS  Google Scholar 

  76. Basu S, Kwee TC, Gatenby R, Saboury B, Torigian DA, Alavi A. Evolving role of molecular imaging with PET in detecting and characterizing heterogeneity of cancer tissue at the primary and metastatic sites, a plausible explanation for failed attempts to cure malignant disorders. Eur J Nucl Med Mol Imaging. 2011;38:987–91.

    Article  PubMed  Google Scholar 

  77. Asselin M-C, O’Connor JPB, Boellaard R, Thacker NA, Jackson A. Quantifying heterogeneity in human tumours using MRI and PET. Eur J Cancer. 2012;48:447–55.

    Article  PubMed  Google Scholar 

  78. Beresford M, Sanghera B, Wong W-L, Makris A. Imaging of primary breast cancer with 18F-fluorodeoxythymidine PET-CT reveals heterogeneity of proliferation throughout the tumour. Eur J Nucl Med Mol Imaging. 2006;33:624.

    Article  PubMed  Google Scholar 

  79. Sorensen M, Horsman MR, Cumming P, Munk OL, Keiding S. Effect of intratumoral heterogeneity in oxygenation status on FMISO PET, autoradiography, and electrode PO2 measurements in murine tumors. Int J Radiat Oncol Biol Phys. 2005;62:854–61.

    Article  PubMed  Google Scholar 

  80. Wyss MT, Hofer S, Hefti M, Bartschi E, Uhlmann C, Treyer V, et al. Spatial heterogeneity of low-grade gliomas at the capillary level: a PET study on tumor blood flow and amino acid uptake. J Nucl Med. 2007;48:1047–52.

    Article  PubMed  CAS  Google Scholar 

  81. Hatt M, Cheze-le Rest C, van Baardwijk A, Lambin P, Pradier O, Visvikis D. Impact of tumor size and tracer uptake heterogeneity in (18)F-FDG PET and CT non-small cell lung cancer tumor delineation. J Nucl Med. 2011;52:1690–7.

    Article  PubMed  Google Scholar 

  82. Spence AM, Muzi M, Mankoff DA, O’Sullivan SF, Link JM, Lewellen TK, et al. 18F-FDG PET of gliomas at delayed intervals: improved distinction between tumor and normal gray matter. J Nucl Med. 2004;45:1653–9.

    PubMed  Google Scholar 

  83. Prieto E, Marti-Climent JM, Dominguez-Prado I, Garrastachu P, Diez-Valle R, Tejada S, et al. Voxel-based analysis of dual-time-point 18F-FDG PET images for brain tumor identification and delineation. J Nucl Med. 2011;52:865–72.

    Article  PubMed  Google Scholar 

  84. Horky LL, Hsiao EM, Weiss SE, Drappatz J, Gerbaudo VH. Dual phase FDG-PET imaging of brain metastases provides superior assessment of recurrence versus post-treatment necrosis. J Neurooncol. 2011;103:137–46.

    Article  PubMed  Google Scholar 

  85. Chin BB, Green ED, Turkington TG, Hawk TC, Coleman RE. Increasing uptake time in FDG-PET: standardized uptake values in normal tissues at 1 versus 3 h. Mol Imaging Biol. 2009;11:118–22.

    Article  PubMed  Google Scholar 

  86. Deppen S, Putnam Jr JB, Andrade G, Speroff T, Nesbitt JC, Lambright ES, et al. Accuracy of FDG-PET to diagnose lung cancer in a region of endemic granulomatous disease. Ann Thorac Surg. 2011;92:428–32.

    Article  PubMed  Google Scholar 

  87. Alavi A, Gupta N, Alberini J-L, Hickeson M, Adam L-E, Bhargava P, et al. Positron emission tomography imaging in nonmalignant thoracic disorders. Semin Nucl Med. 2002;32:293–321.

    Article  PubMed  Google Scholar 

  88. Conrad GR, Sinha P. Narrow time-window dual-point 18F-FDG PET for the diagnosis of thoracic malignancy. Nucl Med Commun. 2003;24:1129–37.

    Article  PubMed  CAS  Google Scholar 

  89. Uesaka D, Demura Y, Ishizaki T, Ameshima S, Miyamori I, Sasaki M, et al. Evaluation of dual-time-point 18F-FDG PET for staging in patients with lung cancer. J Nucl Med. 2008;49:1606–12.

    Article  PubMed  Google Scholar 

  90. Lin W-Y, Tsai S-C, Hung G-U. Value of delayed 18F-FDG-PET imaging in the detection of hepatocellular carcinoma. Nucl Med Commun. 2005;26:315–21.

    Article  PubMed  Google Scholar 

  91. Nishiyama Y, Yamamoto Y, Kimura N, Miki A, Sasakawa Y, Wakabayashi H, et al. Comparison of early and delayed FDG PET for evaluation of biliary stricture. Nucl Med Commun. 2007;28:914–9.

    Article  PubMed  Google Scholar 

  92. Kim SJ, Kim BH, Jeon YK, Kim SS, Kim IJ. Limited diagnostic and predictive values of dual-time-point 18F FDG PET/CT for differentiation of incidentally detected thyroid nodules. Ann Nucl Med. 2011;25:347–53.

    Article  PubMed  Google Scholar 

  93. Hsiao YC, Wu PS, Chiu NT, Yao WJ, Lee BF, Peng SL. The use of dual-phase 18F-FDG PET in characterizing thyroid incidentalomas. Clin Radiol. 2011;66:1197–202.

    Article  PubMed  Google Scholar 

Download references

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abass Alavi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, G., Torigian, D.A., Zhuang, H. et al. When should we recommend use of dual time-point and delayed time-point imaging techniques in FDG PET?. Eur J Nucl Med Mol Imaging 40, 779–787 (2013). https://doi.org/10.1007/s00259-013-2343-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-013-2343-9

Keywords

Navigation