Skip to main content
Log in

Regional distribution and kinetics of [18F]fluciclovine (anti-[18F]FACBC), a tracer of amino acid transport, in subjects with primary prostate cancer

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

[18F]Fluciclovine (anti-[18F]FACBC) is a synthetic amino acid developed for PET assessment of the anabolic component of tumour metabolism in clinical routine. This phase 1 trial evaluated the safety, tracer stability and uptake kinetics of [18F]fluciclovine in patients.

Methods

Six patients with biopsy-proven prostate cancer were investigated with 3-T MRI and PET/CT. All underwent dynamic [18F]fluciclovine PET/CT of the pelvic area for up to 120 min after injection of 418 ± 10 MBq of tracer with simultaneous blood sampling of radioactivity. The kinetics of uptake in tumours and normal tissues were evaluated using standardized uptake values (SUVs) and compartmental modelling.

Results

Tumour deposits as defined by MRI were clearly visualized by PET. Urine excretion was minimal and normal tissue background was low. Uptake of [18F]fluciclovine in tumour from the blood was rapid and the tumour-to-normal tissue contrast was highest between 1 and 15 min after injection with a 65 % reduction in mean tumour uptake at 90 min after injection. A one-compartment model fitted the tracer kinetics well. Early SUVs correlated well with both the influx rate constant (K 1) and the volume of distribution of the tracer (V T). There were no signs of tracer metabolite formation. The product was well tolerated in all patients without significant adverse events.

Conclusion

[18F]Fluciclovine shows high uptake in prostate cancer deposits and appears safe for use in humans. The production is robust and the formulation stable in vivo. An early imaging window seems to provide the best visual results. SUV measurements capture most of the kinetic information that can be obtained from more advanced models, potentially simplifying quantification in future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. National Cancer Institute. Surveillance Epidemiology and End Results Program. Cancer of the Prostate Statistics. 2010.

  2. Black RJ, Bray F, Ferlay J, Parkin DM. Cancer incidence and mortality in the European Union: cancer registry data and estimates of national incidence for 1990. Eur J Cancer. 1997;33:1075–107.

    Article  PubMed  CAS  Google Scholar 

  3. Engelbrecht MR, Barentsz JO, Jager GJ, van der Graaf M, Heerschap A, Sedelaar JP, et al. Prostate cancer staging using imaging. BJU Int. 2000;86 Suppl 1:123–34.

    PubMed  Google Scholar 

  4. Apolo AB, Pandit-Taskar N, Morris MJ. Novel tracers and their development for the imaging of metastatic prostate cancer. J Nucl Med. 2008;49:2031–41.

    Article  PubMed  Google Scholar 

  5. Jadvar H. Molecular imaging of prostate cancer with 18F-fluorodeoxyglucose PET. Nat Rev Urol. 2009;6:317–23. doi:10.1038/nrurol.2009.81.

    Article  PubMed  CAS  Google Scholar 

  6. Beheshti M, Imamovic L, Broinger G, Vali R, Waldenberger P, Stoiber F, et al. 18F choline PET/CT in the preoperative staging of prostate cancer in patients with intermediate or high risk of extracapsular disease: a prospective study of 130 patients. Radiology. 2010;254:925–33. doi:10.1148/radiol.09090413.

    Article  PubMed  Google Scholar 

  7. Picchio M, Briganti A, Fanti S, Heidenreich A, Krause BJ, Messa C, et al. The role of choline positron emission tomography/computed tomography in the management of patients with prostate-specific antigen progression after radical treatment of prostate cancer. Eur Urol. 2011;59:51–60. doi:10.1016/j.eururo.2010.09.004.

    Article  PubMed  Google Scholar 

  8. Sandblom G, Sörensen J, Lundin N, Häggman M, Malmström P-U. Positron emission tomography with C11-acetate for tumor detection and localization in patients with prostate-specific antigen relapse after radical prostatectomy. Urology. 2006;67:996–1000.

    Article  PubMed  Google Scholar 

  9. Wachter S, Tomek S, Kurtaran A, Wachter-Gerstner N, Djavan B, Becherer A, et al. 11C-acetate positron emission tomography imaging and image fusion with computed tomography and magnetic resonance imaging in patients with recurrent prostate cancer. J Clin Oncol. 2006;24:2513–9. doi:10.1200/JCO.2005.03.5279.

    Article  PubMed  Google Scholar 

  10. Even-Sapir E, Metser U, Mishani E, Lievshitz G, Lerman H, Leibovitch I. The detection of bone metastases in patients with high-risk prostate cancer: 99mTc-MDP planar bone scintigraphy, single- and multi-field-of-view SPECT, 18F-fluoride PET, and 18F-fluoride PET/CT. J Nucl Med. 2006;47:287–97.

    PubMed  Google Scholar 

  11. Seppälä J, Seppänen M, Arponen E, Lindholm P, Minn H. Carbon-11 acetate PET/CT based dose escalated IMRT in prostate cancer. Radiother Oncol. 2009;93:234–40.

    Article  PubMed  Google Scholar 

  12. Jani AB, Fox TH, Whitaker D, Schuster DM. Case study of anti-1-amino-3-F-18 fluorocyclobutane-1-carboxylic acid (anti-[F-18] FACBC) to guide prostate cancer radiotherapy target design. Clin Nucl Med. 2009;34:279–84.

    Article  PubMed  Google Scholar 

  13. Yu EY, Muzi M, Hackenbracht JA, Rezvani BB, Link JM, Montgomery RB, et al. C11-acetate and F-18FDG PET for men with prostate cancer bone metastases: relative findings and response to therapy. Clin Nucl Med. 2011;36:192–8. doi:10.1097/RLU.0b013e318208f140.

    Article  PubMed  Google Scholar 

  14. Pinkawa M, Holy R, Piroth MD, Klotz J, Nussen S, Krohn T, et al. Intensity-modulated radiotherapy for prostate cancer implementing molecular imaging with 18F-choline PET-CT to define a simultaneous integrated boost. Strahlenther Onkol. 2010;186:600–6. doi:10.1007/s00066-010-2122-5.

    Article  PubMed  Google Scholar 

  15. Meirelles GS, Schoder H, Ravizzini GC, Gonen M, Fox JJ, Humm J, et al. Prognostic value of baseline [18F] fluorodeoxyglucose positron emission tomography and 99mTc-MDP bone scan in progressing metastatic prostate cancer. Clin Cancer Res. 2010;16:6093–9. doi:10.1158/1078-0432.CCR-10-1357.

    Article  PubMed  CAS  Google Scholar 

  16. Schuster DM, Votaw JR, Nieh PT, Yu W, Nye JA, Master V, et al. Initial experience with the radiotracer anti-1-amino-3-18F-fluorocyclobutane-1-carboxylic acid with PET/CT in prostate carcinoma. J Nucl Med. 2007;48:56–63.

    PubMed  CAS  Google Scholar 

  17. Nye JA, Schuster DM, Yu W, Camp VM, Goodman MM, Votaw JR. Biodistribution and radiation dosimetry of the synthetic nonmetabolized amino acid analogue anti-18F-FACBC in humans. J Nucl Med. 2007;48:1017–20.

    Article  PubMed  CAS  Google Scholar 

  18. Asano Y, Inoue Y, Ikeda Y, Kikuchi K, Hara T, Taguchi C, et al. Phase I clinical study of NMK36: a new PET tracer with the synthetic amino acid analogue anti-[18F]FACBC. Ann Nucl Med. 2011;25:414–8. doi:10.1007/s12149-011-0477-z.

    Article  PubMed  CAS  Google Scholar 

  19. Kaira K, Oriuchi N, Imai H, Shimizu K, Yanagitani N, Sunaga N, et al. l-type amino acid transporter 1 and CD98 expression in primary and metastatic sites of human neoplasms. Cancer Sci. 2008;99:2380–6. doi:10.1111/j.1349-7006.2008.00969.x.

    Article  PubMed  CAS  Google Scholar 

  20. McParland BJ, Lax M, Axelsson J, Wall A, Johansson S, Sorensen J. The biodistribution and internal radiation dosimetry of [18F]GE-148 in healthy adult volunteers. Eur J Nucl Med Mol Imaging. 2010;37 (Suppl 2):S287

    Google Scholar 

  21. McConathy J, Voll RJ, Yu W, Crowe RJ, Goodman MM. Improved synthesis of anti-[18F]FACBC: improved preparation of labeling precursor and automated radiosynthesis. Appl Radiat Isot. 2003;58:657–66.

    Article  PubMed  CAS  Google Scholar 

  22. Kessler RM, Ellis Jr JR, Eden M. Analysis of emission tomographic scan data: limitations imposed by resolution and background. J Comput Assist Tomogr. 1984;8:514–22.

    Article  PubMed  CAS  Google Scholar 

  23. Carson R. Mathematical modeling and compartmental analysis. In: Harbert J, Eckelman WC, Neumann R, editors. Nuclear medicine: diagnosis and therapy. New York: Thieme Medical Publishers; 1996. p. 167–94.

    Google Scholar 

  24. Meyer E. Simultaneous correction for tracer arrival delay and dispersion in CBF measurements by the H215O autoradiographic method and dynamic PET. J Nucl Med. 1989;30:1069–78.

    PubMed  CAS  Google Scholar 

  25. Akaike H. A new look at the statistical model identification. IEEE Trans Autom Control. 1974;19:716–23. doi:10.1109/TAC.1974.1100705.

    Article  Google Scholar 

  26. Schiepers C, Hoh CK, Nuyts J, Seltzer M, Wu C, Huang SC, et al. 1-11C-acetate kinetics of prostate cancer. J Nucl Med. 2008;49:206–15. doi:10.2967/jnumed.107.044453.

    Article  PubMed  CAS  Google Scholar 

  27. Berghmans T, Dusart M, Paesmans M, Hossein-Foucher C, Buvat I, Castaigne C, et al. Primary tumor standardized uptake value (SUVmax) measured on fluorodeoxyglucose positron emission tomography (FDG-PET) is of prognostic value for survival in non-small cell lung cancer (NSCLC): a systematic review and meta-analysis (MA) by the European Lung Cancer Working Party for the IASLC Lung Cancer Staging Project. J Thorac Oncol. 2008;3:6–12.

    Article  PubMed  Google Scholar 

  28. Higgins KA, Hoang JK, Roach MC, Chino J, Yoo DS, Turkington TG, et al. Analysis of pretreatment FDG-PET SUV parameters in head-and-neck cancer: tumor SUV(mean) has superior prognostic value. Int J Radiat Oncol Biol Phys. 2012;82:548–53. doi:10.1016/j.ijrobp.2010.11.050.

    Article  PubMed  Google Scholar 

  29. Hoang JK, Hoagland LF, Coleman RE, Coan AD, Herndon JE, Patz EF. Prognostic value of fluorine-18 fluorodeoxyglucose positron emission tomography imaging in patients with advanced-stage non-small-cell lung carcinoma. J Clin Oncol. 2008;26:1459–64. doi:10.1200/jco.2007.14.3628.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Drs. Torsten Danfors, Anders Wall, Gunnar Antoni and Jan Axelsson, and the staff of the PET Center, Uppsala University Hospital, for their support in the study. The trial was sponsored by GE Healthcare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Sörensen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sörensen, J., Owenius, R., Lax, M. et al. Regional distribution and kinetics of [18F]fluciclovine (anti-[18F]FACBC), a tracer of amino acid transport, in subjects with primary prostate cancer. Eur J Nucl Med Mol Imaging 40, 394–402 (2013). https://doi.org/10.1007/s00259-012-2291-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-012-2291-9

Keywords

Navigation