Skip to main content

Advertisement

Log in

[18F]FLT is superior to [18F]FDG for predicting early response to antiproliferative treatment in high-grade lymphoma in a dose-dependent manner

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Positron emission tomography (PET) with the thymidine analogue [18F]fluorothymidine ([18F]FLT) has been shown to detect early response to chemotherapy in high-grade lymphoma. In this preclinical in vitro and in vivo study we compared [18F]FLT to the glucose analogue [18F]fluorodeoxyglucose ([18F]FDG) regarding dose-dependent visualization and prediction of early therapy response.

Methods

Immunodeficient mice bearing human diffuse large B-cell lymphoma (SUDHL-4) xenotransplants were treated intraperitoneally with increasing doses of the cytotoxic agent doxorubicin. Metabolic and antiproliferative effects were assessed 2 days after therapy by [18F]FLT and [18F]FDG PET. Explanted lymphomas were analysed histologically and by immunostaining against Ki67 and caspase 3. In vitro, lymphoma cells were incubated with increasing concentrations of doxorubicin and analysed using the tetrazolium assay, fluorescence-activated cell sorting, and [18F]FLT and [18F]FDG uptake 48 h later.

Results

In vivo, tumour growth was inhibited by doses of doxorubicin ranging from 25 μg to 200 μg. The mean tumour-to-background ratio (TBR) of [18F]FLT on day +2 was significantly reduced in all dose groups compared to control and baseline values and preceded changes in tumour volume. Importantly, there was a significant inverse correlation between reduction in TBR and dose of chemotherapy (r = −0.54, p = 0.021). The mean TBR of [18F]FDG, however, increased after therapy and differed considerably between groups (r = −0.13, p = 0.668). Explanted tumours showed a dose-dependent decrease in the proliferation marker Ki67, but no change in the apoptotic marker caspase 3. In vitro, doxorubicin led to a dose-dependent reduction in cell viability and a decrease in S phase. Lymphoma cells showed a dose-dependent reduction in [18F]FLT uptake, in contrast to a variable and decelerated reduction in [18F]FDG uptake. Thus, the increase in [18F]FDG uptake in vivo presumably reflected nonspecific glucose metabolism of inflammatory cells, as confirmed by histology of explanted lymphomas.

Conclusion

Early responses to dose-dependent antiproliferative treatment in high-grade lymphoma are more accurately visualized with [18F]FLT PET than with [18F]FDG PET.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Cheson BD, Horning SJ, Coiffier B, Shipp MA, Fisher RI, et al. Report of an international workshop to standardize response criteria for non-Hodgkin’s lymphomas. NCI Sponsored International Working Group. J Clin Oncol. 1999;17:1244.

    PubMed  CAS  Google Scholar 

  2. Surbone A, Longo DL, DeVita Jr VT, Ihde DC, Duffey PL, et al. Residual abdominal masses in aggressive non-Hodgkin’s lymphoma after combination chemotherapy: significance and management. J Clin Oncol. 1988;6:1832–7.

    PubMed  CAS  Google Scholar 

  3. Juweid ME, Stroobants S, Hoekstra OS, Mottaghy FM, Dietlein M, et al. Use of positron emission tomography for response assessment of lymphoma: consensus of the Imaging Subcommittee of International Harmonization Project in Lymphoma. J Clin Oncol. 2007;25:571–8.

    Article  PubMed  Google Scholar 

  4. Kazama T, Faria SC, Varavithya V, Phongkitkarun S, Ito H, et al. FDG-PET in the evaluation of treatment for lymphoma: clinical usefulness and pitfalls. Radiographics. 2005;25:191–207.

    Article  PubMed  Google Scholar 

  5. van Waarde A, Cobben DC, Suurmeijer AJ, Maas B, Vaalburg W, et al. Selectivity of 18F-FLT and 18F-FDG for differentiating tumor from inflammation in a rodent model. J Nucl Med. 2004;45:695–700.

    PubMed  Google Scholar 

  6. Shields AF, Mankoff DA, Link JM, Graham MM, Eary JF, et al. Carbon-11-thymidine and FDG to measure therapy response. J Nucl Med. 1998;39:1757–62.

    PubMed  CAS  Google Scholar 

  7. Shields AF, Grierson JR, Dohmen BM, Machulla HJ, Stayanoff JC, et al. Imaging proliferation in vivo with [F-18]FLT and positron emission tomography. Nat Med. 1998;4:1334–6.

    Article  PubMed  CAS  Google Scholar 

  8. Barthel H, Perumal M, Latigo J, He Q, Brady F, et al. The uptake of 3′-deoxy-3′-[18F]fluorothymidine into L5178Y tumours in vivo is dependent on thymidine kinase 1 protein levels. Eur J Nucl Med Mol Imaging. 2005;32:257–63.

    Article  PubMed  CAS  Google Scholar 

  9. Eriksson S, Arnér E, Spasokoukotskaja T, Wang L, Karlsson A, et al. Properties and levels of deoxynucleoside kinases in normal and tumor cells; implications for chemotherapy. Adv Enzyme Regul. 1994;34:13–25.

    Article  PubMed  CAS  Google Scholar 

  10. Seitz U, Wagner M, Neumaier B, Wawra E, Glatting G, et al. Evaluation of pyrimidine metabolising enzymes and in vitro uptake of 3′-[(18)F]fluoro-3′-deoxythymidine ([(18)F]FLT) in pancreatic cancer cell lines. Eur J Nucl Med Mol Imaging. 2002;29:1174–81.

    Article  PubMed  CAS  Google Scholar 

  11. Rasey JS, Grierson JR, Wiens LW, Kolb PD, Schwartz JL. Validation of FLT uptake as a measure of thymidine kinase-1 activity in A549 carcinoma cells. J Nucl Med. 2002;43:1210–7.

    PubMed  CAS  Google Scholar 

  12. Lu L, Samuelsson L, Bergstrom M, Sato K, Fasth KJ, et al. Rat studies comparing 11C-FMAU, 18F-FLT, and 76Br-BFU as proliferation markers. J Nucl Med. 2002;43:1688–98.

    PubMed  CAS  Google Scholar 

  13. Chen W, Cloughesy T, Kamdar N, Satyamurthy N, Bergsneider M, et al. Imaging proliferation in brain tumors with 18F-FLT PET: comparison with 18F-FDG. J Nucl Med. 2005;46:945–52.

    PubMed  CAS  Google Scholar 

  14. Cobben DC, Elsinga PH, Suurmeijer AJ, Vaalburg W, Maas B, et al. Detection and grading of soft tissue sarcomas of the extremities with (18)F-3′-fluoro-3′-deoxy-L-thymidine. Clin Cancer Res. 2004;10:1685–90.

    Article  PubMed  CAS  Google Scholar 

  15. Smyczek-Gargya B, Fersis N, Dittmann H, Vogel U, Reischl G, et al. PET with [18F]fluorothymidine for imaging of primary breast cancer: a pilot study. Eur J Nucl Med Mol Imaging. 2004;31:720–4.

    Article  PubMed  Google Scholar 

  16. Wagner M, Seitz U, Buck A, Neumaier B, Schultheiss S, et al. 3′-[18F]fluoro-3′-deoxythymidine ([18F]-FLT) as positron emission tomography tracer for imaging proliferation in a murine B-cell lymphoma model and in the human disease. Cancer Res. 2003;63:2681–7.

    PubMed  CAS  Google Scholar 

  17. Buck AK, Bommer M, Stilgenbauer S, Juweid M, Glatting G, et al. Molecular imaging of proliferation in malignant lymphoma. Cancer Res. 2006;66:11055–61.

    Article  PubMed  CAS  Google Scholar 

  18. Herrmann K, Wieder HA, Buck AK, Schöffel M, Krause BJ, et al. Early response assessment using 3′-deoxy-3′-[18F]fluorothymidine-positron emission tomography in high-grade non-Hodgkin’s lymphoma. Clin Cancer Res. 2007;13:3552–8.

    Article  PubMed  CAS  Google Scholar 

  19. Graf N, Herrmann K, den Hollander J, Fend F, Schuster T, et al. Imaging proliferation to monitor early response of lymphoma to cytotoxic treatment. Mol Imaging Biol. 2008;10(6):349–55.

    Article  PubMed  Google Scholar 

  20. Jerusalem G, Beguin Y, Fassotte MF, Najjar F, Paulus P, et al. Persistent tumor 18F-FDG uptake after a few cycles of polychemotherapy is predictive of treatment failure in non-Hodgkin’s lymphoma. Haematologica. 2000;85(6):613–8.

    PubMed  CAS  Google Scholar 

  21. Spaepen K, Stroobants S, Dupont P, Vandenberghe P, Thomas J, et al. Early restaging positron emission tomography with (18)F-fluorodeoxyglucose predicts outcome in patients with aggressive non-Hodgkin’s lymphoma. Ann Oncol. 2002;13(9):1356–63.

    Article  PubMed  CAS  Google Scholar 

  22. Moskowitz CH, Schöder H, Teruya-Feldstein J, Sima C, Iasonos A, et al. Risk-adapted dose-dense immunochemotherapy determined by interim FDG-PET in advanced-stage diffuse large B-cell lymphoma. J Clin Oncol. 2010;28(11):1896–903.

    Article  PubMed  CAS  Google Scholar 

  23. Han HS, Escalón MP, Hsiao B, Serafini A, Lossos IS. High incidence of false-positive PET scans in patients with aggressive non-Hodgkin’s lymphoma treated with rituximab-containing regimens. Ann Oncol. 2009;20(2):309–18.

    Article  PubMed  CAS  Google Scholar 

  24. Brepoels L, De Saint-Hubert M, Stroobants S, Verhoef G, Balzarini J, et al. Dose–response relationship in cyclophosphamide-treated B-cell lymphoma xenografts monitored with [18F]FDG PET. Eur J Nucl Med Mol Imaging. 2010;37(9):1688–95.

    Article  PubMed  CAS  Google Scholar 

  25. Hamacher K, Coenen HH, Stöcklin G. Efficient stereospecific synthesis of no-carrier-added 2-[18F]-fluoro-2-deoxy-D-glucose using aminopolyether supported nucleophilic substitution. J Nucl Med. 1986;27(2):235–8.

    PubMed  CAS  Google Scholar 

  26. Peyrade F, Jardin F, Thieblemont C, Thyss A, Emile JF, et al; Groupe d’Etude des Lymphomes de l’Adulte (GELA) investigators. Attenuated immunochemotherapy regimen (R-miniCHOP) in elderly patients older than 80 years with diffuse large B-cell lymphoma: a multicentre, single-arm, phase 2 trial. Lancet Oncol. 2011;12(5):460–8.

    Article  PubMed  CAS  Google Scholar 

  27. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.

    Article  PubMed  CAS  Google Scholar 

  28. Hurley LH. DNA and its associated processes as targets for cancer therapy. Nat Rev Cancer. 2002;2:188–200.

    Article  PubMed  CAS  Google Scholar 

  29. Greiner DL, Hesselton RA, Shultz LD. SCID mouse models of human stem cell engraftment. Stem Cells. 1998;16(3):166–77.

    Article  PubMed  CAS  Google Scholar 

  30. Spaepen K, Stroobants S, Dupont P, Bormans G, Balzarini J, et al. [(18)F]FDG-PET monitoring of tumour response to chemotherapy: does [(18)F]FDG uptake correlate with the viable tumour cell fraction? Eur J Nucl Med Mol Imaging. 2003;30(5):682–8.

    Article  PubMed  CAS  Google Scholar 

  31. Kubota R, Yamada S, Kubota K, Ishiwata K, Tamahashi N, et al. Intratumoral distribution of fluorine-18-fluorodeoxyglucose in vivo: high accumulation in macrophages and granulation tissues studied by microautoradiography. J Nucl Med. 1992;33(11):1972–80.

    PubMed  CAS  Google Scholar 

  32. Brepoels L, Stroobants S, Verhoef G, De Groot T, Mortelmans L, et al. (18)F-FDG and (18)F-FLT uptake early after cyclophosphamide and mTOR inhibition in an experimental lymphoma model. J Nucl Med. 2009;50(7):1102–9.

    Article  PubMed  CAS  Google Scholar 

  33. Higashi K, Clavo AC, Wahl RL. In vitro assessment of 2-fluoro-2-deoxy-D-glucose, L-methionine and thymidine as agents to monitor the early response of a human adenocarcinoma cell line to radiotherapy. J Nucl Med. 1993;34(5):773–9.

    PubMed  CAS  Google Scholar 

  34. Aloj L, Caracó C, Jagoda E, Eckelman WC, Neumann RD. Glut-1 and hexokinase expression: relationship with 2-fluoro-2-deoxy-D-glucose uptake in A431 and T47D cells in culture. Cancer Res. 1999;59(18):4709–14.

    PubMed  CAS  Google Scholar 

  35. Haberkorn U, Morr I, Oberdorfer F, Bellemann ME, Blatter J, Altmann A, et al. Fluorodeoxyglucose uptake in vitro: aspects of method and effects of treatment with gemcitabine. J Nucl Med. 1994;35(11):1842–50.

    PubMed  CAS  Google Scholar 

  36. Jensen MM, Jørgensen JT, Binderup T, Kjaer A. Tumor volume in subcutaneous mouse xenografts measured by microCT is more accurate and reproducible than determined by 18F-FDG-microPET or external caliper. BMC Med Imaging. 2008;8:16.

    Article  PubMed  Google Scholar 

  37. Jensen MM, Erichsen KD, Björkling F, Madsen J, Jensen PB, et al. Early detection of response to experimental chemotherapeutic Top216 with [18F]FLT and [18F]FDG-PET in human ovary cancer xenografts in mice. PLoS One. 2010;5(9):e12965.

    Article  PubMed  Google Scholar 

  38. Apisarnthanarax S, Alauddin MM, Mourtada F, Ariga H, Raju U, et al. Early detection of chemoradioresponse in esophageal carcinoma by 3′-deoxy-3′-3H-fluorothymidine using preclinical tumor models. Clin Cancer Res. 2006;12:4590–7.

    Article  PubMed  CAS  Google Scholar 

  39. Herrmann K, Buck AK, Schuster T, Rudelius M, Wester HJ, et al. A pilot study to evaluate 3′-deoxy-3′-18F-fluorothymidine PET for initial and early response imaging in mantle cell lymphoma. J Nucl Med. 2011;52(12):1898–902.

    Article  PubMed  CAS  Google Scholar 

  40. Herrmann K, Buck AK, Schuster T, Junger A, Wieder HA, et al. Predictive value of initial 18F-FLT uptake in patients with aggressive non-Hodgkin lymphoma receiving R-CHOP treatment. J Nucl Med. 2011;52(5):690–6.

    Article  PubMed  Google Scholar 

  41. Troost EG, Vogel WV, Merkx MA, Slootweg PJ, Marres HA, et al. 18F-FLT-PET does not discriminate between reactive and metastatic lymph nodes in primary head and neck cancer patients. J Nucl Med. 2007;48:726–35.

    Article  PubMed  Google Scholar 

  42. Wieder HA, Geinitz H, Rosenberg R, Lordick F, Becker K, et al. PET imaging with [(18)F]3′-deoxy-3′-fluorothymidine for prediction of response to neoadjuvant treatment in patients with rectal cancer. Eur J Nucl Med Mol Imaging. 2007;34:878–83.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We appreciate the excellent contributions made by our colleague Petra Watzlowik, PhD, and the great support of our the member of technical staff Sybille Reder, Elisabeth Aywanger and Brigitte Dzewas. Supported by the Deutsche Forschungsgemeinschaft (SFB824 to A. Buck and T. Dechow, SFB TRR54 to U. Keller).

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Graf.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Graf, N., Herrmann, K., Numberger, B. et al. [18F]FLT is superior to [18F]FDG for predicting early response to antiproliferative treatment in high-grade lymphoma in a dose-dependent manner. Eur J Nucl Med Mol Imaging 40, 34–43 (2013). https://doi.org/10.1007/s00259-012-2255-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-012-2255-0

Keywords

Navigation