Skip to main content

Advertisement

Log in

Diagnostic value of combined 18F-FDG PET/MRI for staging and restaging in paediatric oncology

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

The present study compares the diagnostic value of 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) and MRI to combined/registered 18F-FDG PET/MRI for staging and restaging in paediatric oncology.

Methods

Over 8 years and 2 months, 270 18F-FDG PET and 270 MRI examinations (mean interval 5 days) were performed in 132 patients with proven (n = 117) or suspected (n = 15) malignant disease: solid tumours (n = 64), systemic malignancy (n = 53) and benign disease (n = 15). A total of 259 suspected tumour lesions were analysed retrospectively during primary diagnosis and 554 lesions during follow-up. Image analysis was performed separately on each modality, followed by analysis of combined and registered 18F-FDG PET/MRI imaging.

Results

A total of 813 lesions were evaluated and confirmed by histopathology (n = 158) and/or imaging follow-up (n = 655) after 6 months. In the separate analysis of 18F-FDG PET and MRI, sensitivity was 86 %/94 % and specificity 85 %/38 %. Combined/registered 18F-FDG PET/MRI led to a sensitivity of 97 %/97 % and specificity of 81 %/82 %. False-positive results (18F-FDG PET n = 69, MRI n = 281, combined 18F-FDG PET/MRI n = 85, registered 18F-FDG PET/MRI n = 80) were due to physiological uptake or post-therapeutic changes. False-negative results (18F-FDG PET n = 50, MRI n = 20, combined 18F-FDG PET/MRI n = 11, registered 18F-FDG PET/MRI n = 11) were based on low uptake or minimal morphological changes. Examination-based evaluation during follow-up showed a sensitivity/specificity of 91 %/81 % for 18F-FDG PET, 93 %/30 % for MRI and 96 %/72 % for combined 18F-FDG PET/MRI.

Conclusion

For the detection of single tumour lesions, registered 18F-FDG PET/MRI proved to be the methodology of choice for adequate tumour staging. In the examination-based evaluation, MRI alone performed better than 18F-FDG PET and combined/registered imaging during primary diagnosis. At follow-up, however, the examination-based evaluation demonstrated a superiority of 18F-FDG PET alone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Smith MA, Seibel NL, Altekruse SF, Ries LA, Melbert DL, O’Leary M, et al. Outcomes for children and adolescents with cancer: challenges for the twenty-first century. J Clin Oncol 2010;28:2625–34.

    Article  PubMed  Google Scholar 

  2. Schiepers C, Dahlbom M. Molecular imaging in oncology: the acceptance of PET/CT and the emergence of MR/PET imaging. Eur Radiol 2011;21:548–54.

    Article  PubMed  Google Scholar 

  3. Beyer T, Townsend DW, Brun T, Kinahan PE, Charron M, Roddy R, et al. A combined PET/CT scanner for clinical oncology. J Nucl Med 2000;41:1369–79.

    PubMed  CAS  Google Scholar 

  4. Fletcher JW, Djulbegovic B, Soares HP, Siegel BA, Lowe VJ, Lyman GH, et al. Recommendations on the use of 18F-FDG PET in oncology. J Nucl Med 2008;49:480–508.

    Article  PubMed  Google Scholar 

  5. Zaidi H, Del Guerra A. An outlook on future design of hybrid PET/MRI systems. Med Phys 2011;38:5667–89.

    Article  PubMed  Google Scholar 

  6. Kleis M, Daldrup-Link H, Matthay K, Goldsby R, Lu Y, Schuster T, et al. Diagnostic value of PET/CT for the staging and restaging of pediatric tumors. Eur J Nucl Med Mol Imaging 2009;36:23–36.

    Article  PubMed  Google Scholar 

  7. London K, Cross S, Onikul E, Dalla-Pozza L, Howman-Giles R. 18F-FDG PET/CT in paediatric lymphoma: comparison with conventional imaging. Eur J Nucl Med Mol Imaging 2011;38:274–84.

    Article  PubMed  Google Scholar 

  8. Mawlawi O, Townsend DW. Multimodality imaging: an update on PET/CT technology. Eur J Nucl Med Mol Imaging 2009;36 Suppl 1:S15–29.

    Article  PubMed  Google Scholar 

  9. Brix G, Lechel U, Glatting G, Ziegler SI, Münzing W, Müller SP, et al. Radiation exposure of patients undergoing whole-body dual-modality 18F-FDG PET/CT examinations. J Nucl Med 2005;46:608–13.

    PubMed  CAS  Google Scholar 

  10. Kleinerman RA. Cancer risks following diagnostic and therapeutic radiation exposure in children. Pediatr Radiol 2006;36 Suppl 2:121–5.

    Article  PubMed  Google Scholar 

  11. Pichler BJ, Kolb A, Nägele T, Schlemmer HP. PET/MRI: paving the way for the next generation of clinical multimodality imaging applications. J Nucl Med 2010;51:333–6.

    Article  PubMed  Google Scholar 

  12. Darge K, Jaramillo D, Siegel MJ. Whole-body MRI in children: current status and future applications. Eur J Radiol 2008;68:289–98.

    Article  PubMed  Google Scholar 

  13. Antoch G, Vogt FM, Freudenberg LS, Nazaradeh F, Goehde SC, Barkhausen J, et al. Whole-body dual-modality PET/CT and whole-body MRI for tumor staging in oncology. JAMA 2003;290:3199–206.

    Article  PubMed  CAS  Google Scholar 

  14. von Schulthess GK, Schlemmer HP. A look ahead: PET/MR versus PET/CT. Eur J Nucl Med Mol Imaging 2009;36 Suppl 1:S3–9.

    Article  Google Scholar 

  15. Judenhofer MS, Wehrl HF, Newport DF, Catana C, Siegel SB, Becker M, et al. Simultaneous PET-MRI: a new approach for functional and morphological imaging. Nat Med 2008;14:459–65.

    Article  PubMed  CAS  Google Scholar 

  16. Eiber M, Martinez-Möller A, Souvatzoglou M, Holzapfel K, Pickhard A, Löffelbein D, et al. Value of a Dixon-based MR/PET attenuation correction sequence for the localization and evaluation of PET-positive lesions. Eur J Nucl Med Mol Imaging 2011;38:1691–701.

    Article  PubMed  Google Scholar 

  17. Boss A, Bisdas S, Kolb A, Hofmann M, Ernemann U, Claussen CD, et al. Hybrid PET/MRI of intracranial masses: initial experiences and comparison to PET/CT. J Nucl Med 2010;51:1198–205.

    Article  PubMed  Google Scholar 

  18. Stauss J, Franzius C, Pfluger T, Juergens KU, Biassoni L, Begent J, et al. Guidelines for 18F-FDG PET and PET-CT imaging in paediatric oncology. Eur J Nucl Med Mol Imaging 2008;35:1581–8.

    Article  PubMed  CAS  Google Scholar 

  19. Lucignani G, Paganelli G, Bombardieri E. The use of standardized uptake values for assessing FDG uptake with PET in oncology: a clinical perspective. Nucl Med Commun 2004;25:651–6.

    Article  PubMed  CAS  Google Scholar 

  20. Wegner EA, Barrington SF, Kingston JE, Robinson RO, Ferner RE, Taj M, et al. The impact of PET scanning on management of paediatric oncology patients. Eur J Nucl Med Mol Imaging 2005;32:23–30.

    Article  PubMed  CAS  Google Scholar 

  21. Goethals I, Hoste P, De Vriendt C, Smeets P, Verlooy J, Ham H. Time-dependent changes in 18F-FDG activity in the thymus and bone marrow following combination chemotherapy in paediatric patients with lymphoma. Eur J Nucl Med Mol Imaging 2010;37:462–7.

    Article  PubMed  Google Scholar 

  22. Przkora R, Perez-Canto A, Ertel W, Heyde CE. Ganglioneuroma: primary tumor or maturation of a suspected neuroblastoma? Eur Spine J 2006;15:363–5.

    Article  PubMed  Google Scholar 

  23. Dimitrakopoulou-Strauss A, Strauss LG, Heichel T, Wu H, Burger C, Bernd L, et al. The role of quantitative 18F-FDG PET studies for the differentiation of malignant and benign bone lesions. J Nucl Med 2002;43:510–8.

    PubMed  Google Scholar 

  24. Aoki J, Watanabe H, Shinozaki T, Takagishi K, Ishijima H, Oya N, et al. FDG PET of primary benign and malignant bone tumors: standardized uptake value in 52 lesions. Radiology 2001;219:774–7.

    PubMed  CAS  Google Scholar 

  25. Kumar R, Halanaik D, Malhotra A. Clinical applications of positron emission tomography-computed tomography in oncology. Indian J Cancer 2010;47:100–19.

    Article  PubMed  CAS  Google Scholar 

  26. Shreve PD, Anzai Y, Wahl RL. Pitfalls in oncologic diagnosis with FDG PET imaging: physiologic and benign variants. Radiographics 1999;19:61–77.

    PubMed  CAS  Google Scholar 

  27. Weisdorf DJ, Craddock PR, Jacob HS. Glycogenolysis versus glucose transport in human granulocytes: differential activation in phagocytosis and chemotaxis. Blood 1982;60:888–93.

    PubMed  CAS  Google Scholar 

  28. Montravers F, McNamara D, Landman-Parker J, Grahek D, Kerrou K, Younsi N, et al. [(18)F]FDG in childhood lymphoma: clinical utility and impact on management. Eur J Nucl Med Mol Imaging 2002;29:1155–65.

    Article  PubMed  CAS  Google Scholar 

  29. London K, Stege C, Cross S, Onikul E, Graf N, Kaspers G, et al. 18F-FDG PET/CT compared to conventional imaging modalities in pediatric primary bone tumors. Pediatr Radiol 2012;42:418–30.

    Article  PubMed  Google Scholar 

  30. Ratib O, Beyer T. Whole-body hybrid PET/MRI: ready for clinical use? Eur J Nucl Med Mol Imaging 2011;38:992–5.

    Article  PubMed  Google Scholar 

  31. Hoffer FA. Magnetic resonance imaging of abdominal masses in the pediatric patient. Semin Ultrasound CT MR 2005;26:212–23.

    Article  PubMed  Google Scholar 

  32. Foster K, Chapman S, Johnson K. MRI of the marrow in the paediatric skeleton. Clin Radiol 2004;59:651–73.

    Article  PubMed  CAS  Google Scholar 

  33. Baba S, Abe K, Isoda T, Maruoka Y, Sasaki M, Honda H. Impact of FDG-PET/CT in the management of lymphoma. Ann Nucl Med 2011;25:701–16.

    Article  PubMed  Google Scholar 

  34. Daldrup-Link HE, Franzius C, Link TM, Laukamp D, Sciuk J, Jürgens H, et al. Whole-body MR imaging for detection of bone metastases in children and young adults: comparison with skeletal scintigraphy and FDG PET. AJR Am J Roentgenol 2001;177:229–36.

    PubMed  CAS  Google Scholar 

  35. Mody RJ, Bui C, Hutchinson RJ, Yanik GA, Castle VP, Frey KA, et al. FDG PET imaging of childhood sarcomas. Pediatr Blood Cancer 2010;54:222–7.

    PubMed  Google Scholar 

  36. Franzius C, Juergens KU. PET/CT in paediatric oncology: indications and pitfalls. Pediatr Radiol 2009;39 Suppl 3:446–9.

    Article  PubMed  Google Scholar 

  37. Carbone PP, Kaplan HS, Musshoff K, Smithers DW, Tubiana M. Report of the Committee on Hodgkin’s Disease Staging Classification. Cancer Res 1971;31:1860–1.

    PubMed  CAS  Google Scholar 

  38. Edge SB, Byrd DR, Compton CC, Fritz AG, Greene FL, Trotti A. AJCC cancer staging manual. 7th ed. New York: Springer; 2010. p. 1–646.

    Google Scholar 

  39. Depas G, De Barsy C, Jerusalem G, Hoyoux C, Dresse MF, Fassotte MF, et al. 18F-FDG PET in children with lymphomas. Eur J Nucl Med Mol Imaging 2005;32:31–8.

    Article  PubMed  Google Scholar 

  40. Loeffelbein DJ, Souvatzoglou M, Wankerl V, Martinez-Möller A, Dinges J, Schwaiger M, et al. PET-MRI fusion in head-and-neck oncology: current status and implications for hybrid PET/MRI. J Oral Maxillofac Surg 2012;70:473–83.

    Article  PubMed  Google Scholar 

Download references

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henriette I. Melzer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pfluger, T., Melzer, H.I., Mueller, W.P. et al. Diagnostic value of combined 18F-FDG PET/MRI for staging and restaging in paediatric oncology. Eur J Nucl Med Mol Imaging 39, 1745–1755 (2012). https://doi.org/10.1007/s00259-012-2228-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-012-2228-3

Keywords

Navigation