Skip to main content

Advertisement

Log in

Induction and repair of DNA double-strand breaks in blood lymphocytes of patients undergoing 18F-FDG PET/CT examinations

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

The purpose of this study was to evaluate DNA double-strand breaks (DSBs) in blood lymphocytes of patients undergoing positron emission tomography (PET)/CT using γ-H2AX immunofluorescence microscopy and to differentiate between 18F-fluorodeoxyglucose (FDG) and CT-induced DNA lesions.

Methods

This study was approved by the local Ethics Committee and complies with Health Insurance Portability and Accountability Act (HIPAA) requirements. After written informed consent was obtained, 33 patients underwent whole-body 18F-FDG PET/CT (3 MBq/kg body weight, 170/100 reference mAs at 120 kV). The FDG PET and CT portions were performed as an initial CT immediately followed by the PET. Blood samples were obtained before, at various time points following 18F-FDG application and up to 24 h after the CT scan. Distinct foci representing DSBs were quantified in isolated lymphocytes using fluorescence microscopy after staining against the phosphorylated histone variant γ-H2AX.

Results

The DSB values at the various time points were significantly different (p < 0.001). The median baseline level was 0.08/cell (range 0.06–0.12/cell). Peaks of radiation-induced DSBs were found 30 min after 18F-FDG administration (median excess foci 0.11/cell, range 0.06–0.27/cell) and 5 min after CT (median excess foci 0.17/cell, range 0.05–0.54/cell). A significant correlation between CT-induced DSBs and dose length product was obtained (ρ = 0.898, p < 0.001). After 24 h DSB values were still slightly but significantly elevated (median foci 0.11/cell, range 0.10–0.14/cell, p = 0.003) compared to pre-exposure levels.

Conclusion

PET/CT-induced DSBs can be monitored using γ-H2AX immunofluorescence microscopy. Peak values may be obtained 30 min after 18F-FDG injection and 5 min after CT. The radionuclide contributes considerably to the total DSB induction in this setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Glaudemans AW, Signore A. FDG-PET/CT in infections: the imaging method of choice? Eur J Nucl Med Mol Imaging 2010;37:1986–91. doi:10.1007/s00259-010-1587-x.

    Article  PubMed  Google Scholar 

  2. Kwee TC, Basu S, Cheng G, Alavi A. FDG PET/CT in carcinoma of unknown primary. Eur J Nucl Med Mol Imaging 2010;37:635–44. doi:10.1007/s00259-009-1295-6.

    Article  PubMed  Google Scholar 

  3. Townsend DW. Dual-modality imaging: combining anatomy and function. J Nucl Med 2008;49:938–55. doi:10.2967/jnumed.108.051276.

    Article  PubMed  Google Scholar 

  4. Huang B, Law MW, Khong PL. Whole-body PET/CT scanning: estimation of radiation dose and cancer risk. Radiology 2009;251:166–74. doi:10.1148/radiol.2511081300.

    Article  PubMed  Google Scholar 

  5. Khamwan K, Krisanachinda A, Pasawang P. The determination of patient dose from (18)F-FDG PET/CT examination. Radiat Prot Dosimetry 2010;141:50–5. doi:10.1093/rpd/ncq140.

    Article  PubMed  CAS  Google Scholar 

  6. Brix G, Lechel U, Glatting G, Ziegler SI, Münzing W, Müller SP, et al. Radiation exposure of patients undergoing whole-body dual-modality 18F-FDG PET/CT examinations. J Nucl Med 2005;46:608–13.

    PubMed  CAS  Google Scholar 

  7. Radiation dose to patients from radiopharmaceuticals. A report of a Task Group of Committee 2 of the International Commission on Radiological Protection. Ann ICRP 1987;18:1–377.

    Google Scholar 

  8. Hays MT, Watson EE, Thomas SR, Stabin M. MIRD dose estimate report no. 19: radiation absorbed dose estimates from (18)F-FDG. J Nucl Med 2002;43:210–4.

    PubMed  CAS  Google Scholar 

  9. Valentin DJ. 3. Recalculated dose data for 19 frequently used radiopharmaceuticals from ICRP Publication 53. Ann ICRP 1998;28:47–83.

    Article  Google Scholar 

  10. Löbrich M, Rief N, Kühne M, Heckmann M, Fleckenstein J, Rübe C, et al. In vivo formation and repair of DNA double-strand breaks after computed tomography examinations. Proc Natl Acad Sci U S A 2005;102:8984–9. doi:10.1073/pnas.0501895102.

    Article  PubMed  Google Scholar 

  11. Kuefner MA, Hinkmann FM, Alibek S, Azoulay S, Anders K, Kalender WA, et al. Reduction of X-ray induced DNA double-strand breaks in blood lymphocytes during coronary CT angiography using high-pitch spiral data acquisition with prospective ECG-triggering. Invest Radiol 2010;45:182–7. doi:10.1097/RLI.0b013e3181d3eddf.

    Article  PubMed  Google Scholar 

  12. Kuefner MA, Grudzenski S, Schwab SA, Azoulay S, Heckmann M, Heinrich MC, et al. X-ray-induced DNA double-strand breaks after angiographic examinations of different anatomic regions. Rofo 2009;181:374–80. doi:10.1055/s-0028-1109063.

    Article  PubMed  CAS  Google Scholar 

  13. Kuefner MA, Grudzenski S, Schwab SA, Wiederseiner M, Heckmann M, Bautz W, et al. DNA double-strand breaks and their repair in blood lymphocytes of patients undergoing angiographic procedures. Invest Radiol 2009;44:440–6. doi:10.1097/RLI.0b013e3181a654a5.

    Article  PubMed  CAS  Google Scholar 

  14. Antonelli F, Belli M, Cuttone G, Dini V, Esposito G, Simone G, et al. Induction and repair of DNA double-strand breaks in human cells: dephosphorylation of histone H2AX and its inhibition by calyculin A. Radiat Res 2005;164:514–7.

    Article  PubMed  CAS  Google Scholar 

  15. Silbernagl S, Despopoulos A. Color atlas of physiology. 6th ed. New York: Thieme; 2008; 88.

  16. Rothkamm K, Löbrich M. Evidence for a lack of DNA double-strand break repair in human cells exposed to very low x-ray doses. Proc Natl Acad Sci U S A 2003;100:5057–62. doi:10.1073/pnas.08309181000830918100.

    Article  PubMed  CAS  Google Scholar 

  17. Lassmann M, Hänscheid H, Gassen D, Biko J, Meineke V, Reiners C, et al. In vivo formation of gamma-H2AX and 53BP1 DNA repair foci in blood cells after radioiodine therapy of differentiated thyroid cancer. J Nucl Med 2010;51:1318–25. doi:10.2967/jnumed.109.071357.

    Article  PubMed  Google Scholar 

  18. Andrievski A, Wilkins RC. The response of gamma-H2AX in human lymphocytes and lymphocytes subsets measured in whole blood cultures. Int J Radiat Biol 2009;85:369–76. doi:10.1080/09553000902781147.

    Article  PubMed  CAS  Google Scholar 

  19. Sgouros G, Knox SJ, Joiner MC, Morgan WF, Kassis AI. MIRD continuing education: bystander and low dose-rate effects: are these relevant to radionuclide therapy? J Nucl Med 2007;48:1683–91. doi:10.2967/jnumed.105.028183.

    Article  PubMed  CAS  Google Scholar 

  20. Sokolov MV, Dickey JS, Bonner WM, Sedelnikova OA. gamma-H2AX in bystander cells: not just a radiation-triggered event, a cellular response to stress mediated by intercellular communication. Cell Cycle 2007;6:2210–2.

    Article  PubMed  CAS  Google Scholar 

  21. Chin BB, Green ED, Turkington TG, Hawk TC, Coleman RE. Increasing uptake time in FDG-PET: standardized uptake values in normal tissues at 1 versus 3 h. Mol Imaging Biol 2009;11:118–22. doi:10.1007/s11307-008-0177-9.

    Article  PubMed  Google Scholar 

  22. Kuefner MA, Grudzenski S, Hamann J, Achenbach S, Lell M, Anders K, et al. Effect of CT scan protocols on x-ray-induced DNA double-strand breaks in blood lymphocytes of patients undergoing coronary CT angiography. Eur Radiol 2010;20:2917–24. doi:10.1007/s00330-010-1873-9.

    Article  PubMed  CAS  Google Scholar 

  23. Rothkamm K, Balroop S, Shekhdar J, Fernie P, Goh V. Leukocyte DNA damage after multi-detector row CT: a quantitative biomarker of low-level radiation exposure. Radiology 2007;242:244–51. doi:10.1148/radiol.2421060171.

    Article  PubMed  Google Scholar 

  24. Rothkamm K, Horn S. gamma-H2AX as protein biomarker for radiation exposure. Ann Ist Super Sanita 2009;45:265–71.

    PubMed  CAS  Google Scholar 

  25. Rübe CE, Grudzenski S, Kühne M, Dong X, Rief N, Löbrich M, et al. DNA double-strand break repair of blood lymphocytes and normal tissues analysed in a preclinical mouse model: implications for radiosensitivity testing. Clin Cancer Res 2008;14:6546–55. doi:10.1158/1078-0432.CCR-07-5147.

    Article  PubMed  Google Scholar 

  26. Golfier S, Jost G, Pietsch H, Lengsfeld P, Eckardt-Schupp F, Schmid E, et al. Dicentric chromosomes and gamma-H2AX foci formation in lymphocytes of human blood samples exposed to a CT scanner: a direct comparison of dose response relationships. Radiat Prot Dosimetry 2009;134:55–61. doi:10.1093/rpd/ncp061.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Christina Engert, Tobias Löwe, Matthias Sommer, Bernhard Schmidt and Wolfram Nitsch for excellent technical assistance and Luitpold Distel for extraordinary collaboration in the lab. We also thank Ulrich Kahl, Ulrich Gärtner, Gerson Schütze, Kilian Bose, Rainer Linke and Roland Wondra for their support in patient examination and acquisition of blood samples.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias S. May.

Rights and permissions

Reprints and permissions

About this article

Cite this article

May, M.S., Brand, M., Wuest, W. et al. Induction and repair of DNA double-strand breaks in blood lymphocytes of patients undergoing 18F-FDG PET/CT examinations. Eur J Nucl Med Mol Imaging 39, 1712–1719 (2012). https://doi.org/10.1007/s00259-012-2201-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-012-2201-1

Keywords

Navigation