Skip to main content

Advertisement

Log in

Posterior parietooccipital hypometabolism may differentiate mild cognitive impairment from dementia in Parkinson’s disease

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Patients with Parkinson’s disease (PD) may have normal cognition, mild cognitive impairment (MCI) or dementia. We investigated differences in cerebral metabolism associated with these three cognitive states and the relationship between metabolism and cognitive dysfunction.

Methods

FDG PET and a battery of neuropsychological tests were used to study PD patients with dementia (n = 19), MCI (n = 28) and normal cognition (n = 21), and control subjects (n = 20). Regional glucose metabolism in patients and controls was analysed using statistical parametric mapping (SPM8) corrected for age, motor severity and depression. Correlations between the mini-mental state examination score and Z-score values of the different cognitive domains with respect to cerebral FDG uptake were assessed using SPM8.

Results

PD patients with MCI (PD-MCI patients) exhibited decreased FDG uptake in the frontal lobe, and to a lesser extent in parietal areas compared with cognitively normal patients. Patients with dementia showed reduced metabolism in the parietal, occipital and temporal areas and a less extensive reduction in the frontal lobe compared with PD-MCI patients, while widespread hypometabolism was seen in comparison with patients with normal cognition. PD-MCI patients exhibited reduced FDG uptake in the parietal and occipital lobes and in localized areas of the frontal and temporal lobes compared with controls, whereas patients with dementia showed a widespread reduction of cortical metabolism. Mini-mental state examination score correlated positively with metabolism in several lobes, executive function with metabolism in the parietooccipitotemporal junction and frontal lobe, memory with temporoparietal metabolism, visuospatial function with occipitoparietal and temporal metabolism, and language with frontal metabolism.

Conclusion

PD patients with MCI exhibited hypometabolism in several cortical regions compared with controls, and in the frontal and parietal regions compared with cognitively normal patients. Hypometabolism was higher in patients with dementia than in those with MCI, mainly in the posterior cortical areas where it was correlated with visuospatial, memory and executive functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Aarsland D, Zaccai J, Brayne C. A systematic review of prevalence studies of dementia in Parkinson’s disease. Mov Disord. 2005;20(10):1255–63.

    Article  PubMed  Google Scholar 

  2. Hely MA, Reid WG, Adena MA, Halliday GM, Morris JG. The Sydney multicenter study of Parkinson’s disease: the inevitability of dementia at 20 years. Mov Disord. 2008;23(6):837–44.

    Article  PubMed  Google Scholar 

  3. Caviness JN, Driver-Dunckley E, Connor DJ, Sabbagh MN, Hentz JG, Noble B, et al. Defining mild cognitive impairment in Parkinson’s disease. Mov Disord. 2007;22(9):1272–7.

    Article  PubMed  Google Scholar 

  4. Foltynie T, Brayne CE, Robbins TW, Barker RA. The cognitive ability of an incident cohort of Parkinson’s patients in the UK. The CamPaIGN study. Brain. 2004;127(Pt 3):550–60.

    PubMed  Google Scholar 

  5. Litvan I, Aarsland D, Adler CH, Goldman JG, Kulisevsky J, Mollenhauer B, et al. 2.MDS Task Force on mild cognitive impairment in Parkinson's disease: critical review of PD-MCI. Mov Disord. 2011;26(10):1814–24.

    Article  PubMed  Google Scholar 

  6. Williams-Gray CH, Foltynie T, Brayne CE, Robbins TW, Barker RA. Evolution of cognitive dysfunction in an incident Parkinson’s disease cohort. Brain. 2007;130(Pt 7):1787–98.

    Article  PubMed  CAS  Google Scholar 

  7. Janvin CC, Larsen JP, Aarsland D, Hugdahl K. Subtypes of mild cognitive impairment in Parkinson’s disease: progression to dementia. Mov Disord. 2006;21(9):1343–9.

    Article  PubMed  Google Scholar 

  8. Levy G, Jacobs DM, Tang MX, Cote LJ, Louis ED, Alfaro B, et al. Memory and executive function impairment predict dementia in Parkinson’s disease. Mov Disord. 2002;17(6):1221–6.

    Article  PubMed  Google Scholar 

  9. Woods SP, Troster AI. Prodromal frontal/executive dysfunction predicts incident dementia in Parkinson’s disease. J Int Neuropsychol Soc. 2003;9(1):17–24.

    Article  PubMed  Google Scholar 

  10. Williams-Gray CH, Evans JR, Goris A, Foltynie T, Ban M, Robbins TW, et al. The distinct cognitive syndromes of Parkinson’s disease: 5 year follow-up of the CamPaIGN cohort. Brain. 2009;132(Pt 11):2958–69.

    Article  PubMed  Google Scholar 

  11. Pagonabarraga J, Kulisevsky J, Llebaria G, Garcia-Sanchez C, Pascual-Sedano B, Gironell A. Parkinson’s disease-cognitive rating scale: a new cognitive scale specific for Parkinson’s disease. Mov Disord. 2008;23(7):998–1005.

    Article  PubMed  Google Scholar 

  12. Bohnen NI, Koeppe RA, Minoshima S, Giordani B, Albin RL, Frey KA, et al. Cerebral glucose metabolic features of Parkinson disease and incident dementia: longitudinal study. J Nucl Med. 2011;52(6):848–55. doi:10.2967/jnumed.111.089946.

    Article  PubMed  CAS  Google Scholar 

  13. Apostolova LG, Beyer M, Green AE, Hwang KS, Morra JH, Chou YY, et al. Hippocampal, caudate, and ventricular changes in Parkinson’s disease with and without dementia. Mov Disord. 2010;25(6):687–8.

    Article  PubMed  Google Scholar 

  14. Huang C, Mattis P, Tang C, Perrine K, Carbon M, Eidelberg D. Metabolic brain networks associated with cognitive function in Parkinson’s disease. Neuroimage. 2007;34(2):714–23.

    Article  PubMed  Google Scholar 

  15. Liepelt I, Reimold M, Maetzler W, Godau J, Reischl G, Gaenslen A, et al. Cortical hypometabolism assessed by a metabolic ratio in Parkinson’s disease primarily reflects cognitive deterioration-[18F]FDG-PET. Mov Disord. 2009;24(10):1504–11.

    Article  PubMed  Google Scholar 

  16. Peppard RF, Martin WR, Carr GD, Grochowski E, Schulzer M, Guttman M, et al. Cerebral glucose metabolism in Parkinson’s disease with and without dementia. Arch Neurol. 1992;49(12):1262–8.

    Article  PubMed  CAS  Google Scholar 

  17. Yong SW, Yoon JK, An YS, Lee PH. A comparison of cerebral glucose metabolism in Parkinson’s disease, Parkinson’s disease dementia and dementia with Lewy bodies. Eur J Neurol. 2007;14(12):1357–62.

    Article  PubMed  CAS  Google Scholar 

  18. Hosokai Y, Nishio Y, Hirayama K, Takeda A, Ishioka T, Sawada Y, et al. Distinct patterns of regional cerebral glucose metabolism in Parkinson’s disease with and without mild cognitive impairment. Mov Disord. 2009;24(6):854–62.

    Article  PubMed  Google Scholar 

  19. Huang C, Mattis P, Perrine K, Brown N, Dhawan V, Eidelberg D. Metabolic abnormalities associated with mild cognitive impairment in Parkinson disease. Neurology. 2008;70(16 Pt 2):1470–7.

    Article  PubMed  CAS  Google Scholar 

  20. Pappata S, Santangelo G, Aarsland D, Vicidomini C, Longo K, Bronnick K, et al. Mild cognitive impairment in drug-naive patients with PD is associated with cerebral hypometabolism. Neurology. 2011;77(14):1357–62.

    Article  PubMed  CAS  Google Scholar 

  21. Lyoo CH, Jeong Y, Ryu YH, Rinne JO, Lee MS. Cerebral glucose metabolism of Parkinson’s disease patients with mild cognitive impairment. Eur Neurol. 2010;64(2):65–73.

    Article  PubMed  CAS  Google Scholar 

  22. Gelb DJ, Oliver E, Gilman S. Diagnostic criteria for Parkinson disease. Arch Neurol. 1999;56(1):33–9.

    Article  PubMed  CAS  Google Scholar 

  23. Hobson P, Meara J. Risk and incidence of dementia in a cohort of older subjects with Parkinson’s disease in the United Kingdom. Mov Disord. 2004;19(9):1043–9.

    Article  PubMed  Google Scholar 

  24. Folstein MF, Folstein SE, McHugh PR. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12(3):189–98.

    Article  PubMed  CAS  Google Scholar 

  25. Teunisse S, Derix MM. The interview for deterioration in daily living activities in dementia: agreement between primary and secondary caregivers. Int Psychogeriatr. 1997;9 Suppl 1:155–62.

    Article  PubMed  Google Scholar 

  26. Yesavage JA, Brink TL, Rose TL, Lum O, Huang V, Adey M, et al. Development and validation of a geriatric depression screening scale: a preliminary report. J Psychiatr Res. 1982;17(1):37–49.

    Article  PubMed  Google Scholar 

  27. Rodriguez-Oroz MC, Lage PM, Sanchez-Mut J, Lamet I, Pagonabarraga J, Toledo JB, et al. Homocysteine and cognitive impairment in Parkinson’s disease: a biochemical, neuroimaging, and genetic study. Mov Disord. 2009;24(10):1437–44.

    Article  PubMed  Google Scholar 

  28. Buschke H, Fuld PA. Evaluating storage, retention, and retrieval in disordered memory and learning. Neurology. 1974;(24):1019–1025

  29. Parkin AJ, Java RI. Deterioration of frontal lobe function in normal aging: influences of fluid intelligence versus perceptual speed. Neuropsychology. 1999;13(4):539–45.

    Article  PubMed  CAS  Google Scholar 

  30. Emre M, Aarsland D, Brown R, Burn DJ, Duyckaerts C, Mizuno Y, et al. Clinical diagnostic criteria for dementia associated with Parkinson’s disease. Mov Disord. 2007;22(12):1689–707.

    Article  PubMed  Google Scholar 

  31. Litvan I, Goldman JG, Troster AI, Schmand BA, Weintraub D, Petersen RC, et al. Diagnostic criteria for mild cognitive impairment in Parkinson’s disease: Movement Disorder Society Task Force guidelines. Mov Disord. 2012;27(3):349–56.

    Article  PubMed  Google Scholar 

  32. Hooper PK, Meikle SR, Eberl S, Fulham MJ. Validation of postinjection transmission measurements for attenuation correction in neurological FDG-PET studies. J Nucl Med. 1996;37(1):128–36.

    PubMed  CAS  Google Scholar 

  33. Ashburner J, Friston KJ. Unified segmentation. Neuroimage. 2005;26(3):839–51. doi:10.1016/j.neuroimage.2005.02.018.

    Article  PubMed  Google Scholar 

  34. Ashburner J. A fast diffeomorphic image registration algorithm. Neuroimage. 2007;38(1):95–113.

    Article  PubMed  Google Scholar 

  35. Collins DL, Neelin P, Peters TM, Evans AC. Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space. J Comput Assist Tomogr. 1994;18(2):192–205.

    Article  PubMed  CAS  Google Scholar 

  36. Maldjian JA, Laurienti PJ, Burdette JH. Precentral gyrus discrepancy in electronic versions of the Talairach atlas. Neuroimage. 2004;21(1):450–5.

    Article  PubMed  Google Scholar 

  37. Maldjian JA, Laurienti PJ, Kraft RA, Burdette JH. An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets. Neuroimage. 2003;19(3):1233–9.

    Article  PubMed  Google Scholar 

  38. Minoshima S, Frey KA, Foster NL, Kuhl DE. Preserved pontine glucose metabolism in Alzheimer disease: a reference region for functional brain image (PET) analysis. J Comput Assist Tomogr. 1995;19(4):541–7.

    Article  PubMed  CAS  Google Scholar 

  39. Lancaster JL, Woldorff MG, Parsons LM, Liotti M, Freitas CS, Rainey L, et al. Automated Talairach atlas labels for functional brain mapping. Hum Brain Mapp. 2000;10(3):120–31.

    Article  PubMed  CAS  Google Scholar 

  40. Mentis MJ, McIntosh AR, Perrine K, Dhawan V, Berlin B, Feigin A, et al. Relationships among the metabolic patterns that correlate with mnemonic, visuospatial, and mood symptoms in Parkinson’s disease. Am J Psychiatry. 2002;159(5):746–54.

    Article  PubMed  Google Scholar 

  41. Lozza C, Baron JC, Eidelberg D, Mentis MJ, Carbon M, Marie RM. Executive processes in Parkinson’s disease: FDG-PET and network analysis. Hum Brain Mapp. 2004;22(3):236–45.

    Article  PubMed  Google Scholar 

  42. Baddeley A. The central executive: a concept and some misconceptions. J Int Neuropsychol Soc. 1998;4(5):523–6.

    Article  PubMed  CAS  Google Scholar 

  43. Diwadkar VA, Carpenter PA, Just MA. Collaborative activity between parietal and dorso-lateral prefrontal cortex in dynamic spatial working memory revealed by fMRI. Neuroimage. 2000;12(1):85–99.

    Article  PubMed  CAS  Google Scholar 

  44. Petrides M, Pandya DN. Comparative cytoarchitectonic analysis of the human and the macaque ventrolateral prefrontal cortex and corticocortical connection patterns in the monkey. Eur J Neurosci. 2002;16(2):291–310

    Article  PubMed  CAS  Google Scholar 

  45. Sauseng P, Klimesch W, Gruber W, Doppelmayr M, Stadler W, Schabus M. The interplay between theta and alpha oscillations in the human electroencephalogram reflects the transfer of information between memory systems. Neurosci Lett. 2002;324(2):121–4.

    Article  PubMed  CAS  Google Scholar 

  46. Lee PH, Yong SW, An YS. Changes in cerebral glucose metabolism in patients with Parkinson disease with dementia after cholinesterase inhibitor therapy. J Nucl Med. 2008;49(12):2006–11.

    Article  PubMed  Google Scholar 

  47. Aarsland D, Bronnick K, Williams-Gray C, Weintraub D, Marder K, Kulisevsky J, et al. Mild cognitive impairment in Parkinson disease: a multicenter pooled analysis. Neurology. 2010;75(12):1062–9.

    Article  PubMed  CAS  Google Scholar 

  48. Dalrymple-Alford JC, MacAskill MR, Nakas CT, Livingston L, Graham C, Crucian GP, et al. The MoCA: well-suited screen for cognitive impairment in Parkinson disease. Neurology. 2010;75(19):1717–25.

    Article  PubMed  CAS  Google Scholar 

  49. Derejko M, Slawek J, Wieczorek D, Brockhuis B, Dubaniewicz M, Lass P. Regional cerebral blood flow in Parkinson’s disease as an indicator of cognitive impairment. Nucl Med Commun. 2006;27(12):945–51.

    Article  PubMed  Google Scholar 

  50. Melzer TR, Watts R, MacAskill MR, Pitcher TL, Livingston L, Keenan RJ, et al. Grey matter atrophy in cognitively impaired Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2012;83(2):188–94.

    Article  PubMed  Google Scholar 

  51. Hu MT, Taylor-Robinson SD, Chaudhuri KR, Bell JD, Labbe C, Cunningham VJ, et al. Cortical dysfunction in non-demented Parkinson’s disease patients: a combined (31)P-MRS and (18)FDG-PET study. Brain. 2000;123(Pt 2):340–52.

    Article  PubMed  Google Scholar 

  52. Eckert T, Tang C, Eidelberg D. Assessment of the progression of Parkinson’s disease: a metabolic network approach. Lancet Neurol. 2007;6(10):926–32.

    Article  PubMed  Google Scholar 

  53. Huang C, Tang C, Feigin A, Lesser M, Ma Y, Pourfar M, et al. Changes in network activity with the progression of Parkinson’s disease. Brain. 2007;130(Pt 7):1834–46.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant from the Government of Navarra (32/2007), by a grant from FIS (ISCIII), and CIBERNED, Spain. We thank Ainara Estanga for her critical review of the article.

Conflicts of interest

Maria C. Rodriguez-Oroz is on the advisory board of UCB Spain. She has received payment for lectures, as well as travel and accommodation to attend scientific meetings from GlaxoSmithKline, UCB, Lundbeck and Medtronic. She has received research funding from national and regional government bodies in Spain. Jose Obeso has served previously on the Advisory Board of GSK (UK), and received honorarium for lectures given at meetings organized by GSK (Spain), Lundbeck-TEVA and UCB. Grants/Research: Funding from Spanish Science and Education Ministry and European Union (REPLACES). The other authors have no conflicts of interest to report concerning the research dealt with in this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria C. Rodriguez-Oroz.

Additional information

David Garcia-Garcia and Pedro Clavero contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 87 kb)

ESM 2

(DOC 68 kb)

ESM 3

(DOC 99 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garcia-Garcia, D., Clavero, P., Gasca Salas, C. et al. Posterior parietooccipital hypometabolism may differentiate mild cognitive impairment from dementia in Parkinson’s disease. Eur J Nucl Med Mol Imaging 39, 1767–1777 (2012). https://doi.org/10.1007/s00259-012-2198-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-012-2198-5

Keywords

Navigation