Skip to main content

Advertisement

Log in

Imaging for metabotropic glutamate receptor subtype 1 in rat and monkey brains using PET with [18F]FITM

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

In this study, we evaluate the utility of 4-[18F]fluoro-N-[4-[6-(isopropylamino)pyrimidin-4-yl]-1,3-thiazol-2-yl]-N-methylbenzamide ([18F]FITM) as a positron emission tomography (PET) ligand for imaging of the metabotropic glutamate receptor subtype 1 (mGluR1) in rat and monkey brains.

Methods

In vivo distribution of [18F]FITM in brains was evaluated by PET scans with or without the mGluR1-selective antagonist (JNJ16259685). Kinetic parameters of monkey PET data were obtained using the two-tissue compartment model with arterial blood sampling.

Results

In PET studies in rat and monkey brains, the highest uptake of radioactivity was in the cerebellum, followed by moderate uptake in the thalamus, hippocampus and striatum. The lowest uptake of radioactivity was detected in the pons. These uptakes in all brain regions were dramatically decreased by pre-administration of JNJ16259685. In kinetic analysis of monkey PET, the highest volume of distribution (V T ) was detected in the cerebellum (V T  = 11.5).

Conclusion

[18F]FITM has an excellent profile as a PET ligand for mGluR1 imaging. PET with [18F]FITM may prove useful for determining the regional distribution and density of mGluR1 and the mGluR1 occupancy of drugs in human brains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Schoepp DD. Unveiling the functions of presynaptic metabotropic glutamate receptors in the central nervous system. J Pharmacol Exp Ther 2001;299:12–20.

    PubMed  CAS  Google Scholar 

  2. Knöpfel T, Grandes P. Metabotropic glutamate receptors in the cerebellum with a focus on their function in Purkinje cells. Cerebellum 2002;1:19–26.

    Article  PubMed  Google Scholar 

  3. Smith Y, Charara A, Hanson JE, Paquet M, Levey AI. GABA(B) and group I metabotropic glutamate receptors in the striatopallidal complex in primates. J Anat 2000;196(Pt 4):555–76.

    Article  PubMed  CAS  Google Scholar 

  4. Netzeband JG, Parsons KL, Sweeney DD, Gruol DL. Metabotropic glutamate receptor agonists alter neuronal excitability and Ca2+ levels via the phospholipase C transduction pathway in cultured Purkinje neurons. J Neurophysiol 1997;78:63–75.

    PubMed  CAS  Google Scholar 

  5. Emery AC, Pshenichkin S, Takoudjou GR, Grajkowska E, Wolfe BB, Wroblewski JT. The protective signaling of metabotropic glutamate receptor 1 is mediated by sustained, beta-arrestin-1-dependent ERK phosphorylation. J Biol Chem 2010;285:26041–8.

    Article  PubMed  CAS  Google Scholar 

  6. Pshenichkin S, Dolińska M, Klauzińska M, Luchenko V, Grajkowska E, Wroblewski JT. Dual neurotoxic and neuroprotective role of metabotropic glutamate receptor 1 in conditions of trophic deprivation—possible role as a dependence receptor. Neuropharmacology 2008;55:500–8.

    Article  PubMed  CAS  Google Scholar 

  7. Zhou M, Xu W, Liao G, Bi X, Baudry M. Neuroprotection against neonatal hypoxia/ischemia-induced cerebral cell death by prevention of calpain-mediated mGluR1alpha truncation. Exp Neurol 2009;218:75–82.

    Article  PubMed  CAS  Google Scholar 

  8. Kaneda K, Imanishi M, Nambu A, Shigemoto R, Takada M. Differential expression patterns of mGluR1 alpha in monkey nigral dopamine neurons. Neuroreport 2003;14:947–50.

    PubMed  CAS  Google Scholar 

  9. Huang Y, Narendran R, Bischoff F, Guo N, Zhu Z, Bae SA, et al. A positron emission tomography radioligand for the in vivo labeling of metabotropic glutamate 1 receptor: (3-ethyl-2-[11C]methyl-6-quinolinyl)(cis-4-methoxycyclohexyl)methanone. J Med Chem 2005;48:5096–9.

    Article  PubMed  CAS  Google Scholar 

  10. Ohgami M, Haradahira T, Takai N, Zhang MR, Kawamura K, Yamasaki T, Yanamoto K. [18F]FTIDC: a new PET radioligand for metabotropic glutamate receptor 1. Eur J Nucl Med Mol Imaging 2009;36:S310.

    Google Scholar 

  11. Yanamoto K, Konno F, Odawara C, Yamasaki T, Kawamura K, Hatori A, et al. Radiosynthesis and evaluation of [11C]YM-202074 as a PET ligand for imaging the metabotropic glutamate receptor type 1. Nucl Med Biol 2010;37:615–24.

    Article  PubMed  CAS  Google Scholar 

  12. Hostetler ED, Eng W, Joshi AD, Sanabria-Bohórquez S, Kawamoto H, Ito S, et al. Synthesis, characterization, and monkey PET studies of [18F]MK-1312, a PET tracer for quantification of mGluR1 receptor occupancy by MK-5435. Synapse 2011;65:125–35.

    Article  PubMed  CAS  Google Scholar 

  13. Prabhakaran J, Majo VJ, Milak MS, Kassir SA, Palner M, Savenkova L, et al. Synthesis, in vitro and in vivo evaluation of [11C]MMTP: a potential PET ligand for mGluR1 receptors. Bioorg Med Chem Lett 2010;20:3499–501.

    Article  PubMed  CAS  Google Scholar 

  14. Fujinaga M, Maeda J, Yui J, Hatori A, Yamasaki T, Kawamura K, et al. Characterization of 1-(2-[18 F]fluoro-3-pyridyl)-4-(2-isopropyl-1-oxo-isoindoline-5-yl)-5-methyl-1H-1,2,3-triazole, a PET ligand for imaging the metabotropic glutamate receptor type 1 in rat and monkey brains. J Neurochem 2011. doi: 10.1111/j.1471-4159.2011.07348.x.

  15. Fujinaga M, Yamasaki T, Kawamura K, Kumata K, Hatori A, Yui J, et al. Synthesis and evaluation of 6-[1-(2-[18F]fluoro-3-pyridyl)-5-methyl-1H-1,2,3-triazol-4-yl]quinoline for positron emission tomography imaging of the metabotropic glutamate receptor type 1 in brain. Bioorg Med Chem 2011;19:102–10.

    Article  PubMed  CAS  Google Scholar 

  16. Satoh A, Nagatomi Y, Hirata Y, Ito S, Suzuki G, Kimura T, et al. Discovery and in vitro and in vivo profiles of 4-fluoro-N-[4-[6-(isopropylamino)pyrimidin-4-yl]-1,3-thiazol-2-yl]-N-methy lbenzamide as novel class of an orally active metabotropic glutamate receptor 1 (mGluR1) antagonist. Bioorg Med Chem Lett 2009;19:5464–8.

    Article  PubMed  CAS  Google Scholar 

  17. Yamasaki T, Fujinaga M, Yoshida Y, Kumata K, Yui J, Kawamura K, et al. Radiosynthesis and preliminary evaluation of 4-[18F]fluoro-N-[4-[6-(isopropylamino)pyrimidin-4-yl]-1,3-thiazol-2-yl]-N- methylbenzamide as a new positron emission tomography ligand for metabotropic glutamate receptor subtype 1. Bioorg Med Chem Lett 2011;21:2998–3001.

    Article  PubMed  CAS  Google Scholar 

  18. Lavreysen H, Wouters R, Bischoff F, Nóbrega Pereira S, Langlois X, Blokland S, et al. JNJ16259685, a highly potent, selective and systemically active mGlu1 receptor antagonist. Neuropharmacology 2004;47:961–72.

    Article  PubMed  CAS  Google Scholar 

  19. Salt TE, Binns KE, Turner JP, Gasparini F, Kuhn R. Antagonism of the mGlu5 agonist 2-chloro-5-hydroxyphenylglycine by the novel selective mGlu5 antagonist 6-methyl-2-(phenylethynyl)-pyridine (MPEP) in the thalamus. Br J Pharmacol 1999;127:1057–9.

    Article  PubMed  CAS  Google Scholar 

  20. Takei M, Kida T, Suzuki K. Sensitive measurement of positron emitters eluted from HPLC. Appl Radiat Isot 2001;55:229–34.

    Article  PubMed  CAS  Google Scholar 

  21. Akaike H. A new look at the statistical model identification. IEEE Trans Automat Contr 1974;AC19:716–23.

    Article  Google Scholar 

  22. Fujita M, Seibyl JP, Verhoeff NP, Ichise M, Baldwin RM, Zoghbi SS, et al. Kinetic and equilibrium analyses of [(123)I]epidepride binding to striatal and extrastriatal dopamine D(2) receptors. Synapse 1999;34:290–304.

    Article  PubMed  CAS  Google Scholar 

  23. Logan J, Fowler JS, Volkow ND, Wolf AP, Dewey SL, Schlyer DJ, et al. Graphical analysis of reversible radioligand binding from time-activity measurements applied to [N-11C-methyl]-(-)-cocaine PET studies in human subjects. J Cereb Blood Flow Metab 1990;10:740–7.

    Article  PubMed  CAS  Google Scholar 

  24. Fotuhi M, Sharp AH, Glatt CE, Hwang PM, von Krosigk M, Snyder SH, et al. Differential localization of phosphoinositide-linked metabotropic glutamate receptor (mGluR1) and the inositol 1,4,5-trisphosphate receptor in rat brain. J Neurosci 1993;13:2001–12.

    PubMed  CAS  Google Scholar 

  25. Sarkadi B, Homolya L, Szakács G, Váradi A. Human multidrug resistance ABCB and ABCG transporters: participation in a chemoimmunity defense system. Physiol Rev 2006;86:1179–236.

    Article  PubMed  CAS  Google Scholar 

  26. Ferraguti F, Crepaldi L, Nicoletti F. Metabotropic glutamate 1 receptor: current concepts and perspectives. Pharmacol Rev 2008;60:536–81.

    Article  PubMed  CAS  Google Scholar 

  27. Ferraguti F, Shigemoto R. Metabotropic glutamate receptors. Cell Tissue Res 2006;326:483–504.

    Article  PubMed  CAS  Google Scholar 

  28. Waterhouse RN. Determination of lipophilicity and its use as a predictor of blood-brain barrier penetration of molecular imaging agents. Mol Imaging Biol 2003;5:376–89.

    Article  PubMed  Google Scholar 

  29. Lavreysen H, Janssen C, Bischoff F, Langlois X, Leysen JE, Lesage AS. [3H]R214127: a novel high-affinity radioligand for the mGlu1 receptor reveals a common binding site shared by multiple allosteric antagonists. Mol Pharmacol 2003;63:1082–93.

    Article  PubMed  CAS  Google Scholar 

  30. Kaneda K, Tachibana Y, Imanishi M, Kita H, Shigemoto R, Nambu A, et al. Down-regulation of metabotropic glutamate receptor 1alpha in globus pallidus and substantia nigra of parkinsonian monkeys. Eur J Neurosci 2005;22:3241–54.

    Article  PubMed  CAS  Google Scholar 

  31. Roselli F, Hutzler P, Wegerich Y, Livrea P, Almeida OF. Disassembly of shank and homer synaptic clusters is driven by soluble beta-amyloid(1-40) through divergent NMDAR-dependent signalling pathways. PLoS One 2009;4:e6011.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Nobuki Nengaki and Masanao Ogawa (SHI Accelerator Service Co. Ltd.) for radiosynthesis, and Hidekatsu Wakizaka and Takashi Okauchi (National Institute of Radiological Sciences) for MRI and PET scans. We are also grateful to the staff of the National Institute of Radiological Sciences for assistance with the cyclotron operation and animal experiments.

This work was partly supported by a Grant-in-Aid for Basic Research (C) (Zhang MR, 22591379) from the Ministry of Education, Culture, Sports, Science and Technology of the Japanese Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Rong Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PPT 190 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamasaki, T., Fujinaga, M., Maeda, J. et al. Imaging for metabotropic glutamate receptor subtype 1 in rat and monkey brains using PET with [18F]FITM. Eur J Nucl Med Mol Imaging 39, 632–641 (2012). https://doi.org/10.1007/s00259-011-1995-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-011-1995-6

Keywords

Navigation